

RESTful Web API Design

Version 2.0
Published 2019-08

RESTful API Web Design

Page 2 of 163

Credits

Author: Steffen M. Fohn, ADP (steffen.fohn@adp.com)

Other Contributors:

Isabel Espina, ADP

Michael Figura, (OAGi

Boonserm Kulvatunyou, NIST

Scott Nieman, Land O’Lakes

Michael Rowell, Oracle

Nikola Stojanovic, Individual Invited Expert

Jim Wilson, OAGi

RESTful API Web Design

Page 3 of 163

Document History

Version
Number

Release
Date

Author

Version / Revision Summary

V 2.0 RC
2.1

December
2017

Steffen Fohn Version contributed

V 2.0 RC
2.2

May 2019 Steffen Fohn Updated per OAGi REST Working Group
Review

RESTful API Web Design

Page 4 of 163

Table of Contents

1 Conventions 8

2 Introduction 9
 Purpose 11
 Scope and Applicability 11
 Goal of This Specification 11
 Definitions and Terminology 11

2.4.1 Definitions 11
2.4.2 Terminology 15

3 Rationale 16

4 Versioning 16
 Backwards Compatibility 17

5 Message Architecture 19

6 Message Headers 21
 General Headers 22
 Request Headers 24
 Response Headers 38
 Entity Headers 42
 Custom Headers 48
 Caching 55

6.6.1 Expiration Mechanism 55
6.6.2 Validation Mechanism 56

7 Message Resource Identificaiton 58
 Resource Types 58
 URI Design and Format 59

7.2.1 Service Owner 59
7.2.1.1 Design 59

7.2.2 API and Developer Domains 60
7.2.2.1 API Domain 60
7.2.2.2 Developer Domain 61

7.2.3 URI Path 61
7.2.3.1 Service Domain 61
7.2.3.2 API Version 62
7.2.3.3 Resource Model 62
7.2.3.4 Format 63

7.2.4 URI Query 64
7.2.4.1 Design 65

RESTful API Web Design

Page 5 of 163

7.2.4.2 Format 65
 URI Encoding 65
 URI Template Design and Format 66

8 Message Resource Management 67
 Query Criteria in the Query Component 68

8.1.1.1 Specifying Filter Criterion 70
8.1.1.2 “any/all” Lambda Operators 71

 Query Criteria in the Path Component 72
 CRUD Operations 72

8.3.1 Create Operations 76
8.3.2 Update Operations 77
8.3.3 Delete Operations 79
8.3.4 Read Operations 79

8.3.4.1 Specifying Selection Criterion (for a Partial Response) 81
8.3.4.2 Specifying Expansion Criterion 81
8.3.4.3 Specifying Instance Resource Start Sequence Criterion 83
8.3.4.4 Specifying Instance Resource Maximum Number Criterion 84
8.3.4.5 Specifying Instance Resource Total Number Criterion 85
8.3.4.6 Specifying Order Criterion 86
8.3.4.7 Specifying Search Criterion 87
8.3.4.8 Specifying Pagination Criteria 88

8.3.4.8.1 Client Requires Pagination Read Consistency 93
8.3.4.8.2 Client Does Not Require Pagination Read Consistency 96

8.3.4.9 Specifying View Criterion 97
8.3.5 Conditional Operations 98
8.3.6 A Note on Nulls 98
 Custom Operations 99
 Bulk Operations 101
 A Pattern for Large URIs and Query Components with Sensitive Data 101

9 Hypermedia Controls 106
 Hypermedia Actions 112

10 Confirmation Management 113
 HTTP Response Status 114

10.1.1 1xx Informational 119
10.1.2 2xx Success 119
10.1.3 3xx Redirection 121
10.1.4 4xx Client Error 123
10.1.5 5xx Server Error 127

 Confirm Message Request 128

RESTful API Web Design

Page 6 of 163

 Confirm Message Response 129

11 Patterns for Asynchronous Communication 139
 A pattern for Service Provider Push 140
 A Pattern for Service Consumer Pull 142
 A Pattern for Service Consumer Polling and Pull 145

12 Patterns for Event Notifications 149
 A Pattern for Long Polling 149

13 Special Cases 152
 Media Type Selection 152
 Multipart Message Instances 152

14 Message Body Representations 156
 Metadata Representation 156
 Resource Representations 156

15 References 158
 Appendix A: Message Body Alternatives 162

RESTful API Web Design

Page 7 of 163

List of Figures

Figure 1: API Specification Versioning and Dependency 16
Figure 2: HTTP Message Architecture .. 20
Figure 3: Positive Approach to Cache Validation 57
Figure 4: Resource Management Operation .. 68
Figure 5: Get Request Message ... 89
Figure 6: Get Response Message .. 90
Figure 7: Systems Interaction for URIs with Voluminous and Sensitive Data
- Save and Query an Instance Resource Set (Pattern 1) 102
Figure 8: Systems Interaction for URIs with Voluminous and Sensitive Data
- Query the Instance Resource Set (Pattern 2) 104
Figure 9: Link Description Model ... 106
Figure 10: Hypermedia Actions Logical Model 112
Figure 11: Confirm Message Logical Model ... 130
Figure 12: Asynchronous Service Provider Push Response Pattern 140
Figure 13: Asynchronous Service Consumer Pull Response Pattern 143
Figure 14: Asynchronous Service Consumer Polling and Pull Response
Pattern .. 146
Figure 15: Event Notifications Long Polling Pattern 150

List of Tables

Table 1: General Headers .. 22
Table 2: Request Headers ... 27
Table 3: Response Headers .. 39
Table 4: Entity Headers ... 43
Table 5: Custom Headers .. 50
Table 6: HTTP Request Methods for Resource Data Management 73
Table 7: HTTP Request Method Usage for CRUD Operations 75
Table 8: HTTP Request Method for Custom Operations 100
Table 9: HTTP Response Status Codes .. 116
Table 10: HTTP Response Status Code Usage 118
Table 11: Types of Messages by Request Processing Status 135
Table 12: Confirm Message Status to HTTP Response Status Map 137

file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985449
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985450
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985451
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985452
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985453
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985454
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985455
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985455
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985456
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985456
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985457
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985458
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985459
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985460
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985461
file://Users/fohns/Documents/My-Work/Git-Repositories/steffens-work/Data-Architecture/Industry%20Standards/OAGi/Contribution/RESTful%20Web%20API%20Design/Restful%20Styled-SMF.docx#_Toc24985463

RESTful API Web Design

Page 8 of 163

1 Conventions

• Italicized Text

o Used to emphasize text.

• Bolded Text

o Used to indicate words and characters that identify concepts
significant to this specification (e.g. defined terms, HTTP header
field names)

• Italicized, Bolded Text

o Used to indicate variables that should be replaced by value
assignments.

• [option]

o Content contained in the brackets is optional (e.g. literals,
variable value assignments) as optional.

• alternative1 | alternative2

o The pipe symbol separates alternatives.

• “literal”

o Quotation marks surround literal text and quoted reference
material.

RESTful API Web Design

Page 9 of 163

2 Introduction
An Application Programming Interface (API) is a named set of operations (functions and
data) that is offered by a provider system and used by consumer systems to enable
communication between the provider and consumer systems (i.e. applications). A Web
Service (i.e. a Service exposed on the World Wide Web) offers a Web API. A Web API that
conforms to the REST architectural style is a RESTful Web API.

The REST (Representational State Transfer or Representational Entity State Transfer)
architectural style was named as such and defined by Roy Fielding in 2000 in his Ph.D.
dissertation that describes the Web’s architectural style. [Fielding (2000)]

Fielding’s description of the REST architectural style consisted of constraints in six
categories:

• Client-Server
• Stateless
• Cache
• Uniform Interface
• Layered System
• Code-On-Demand

The Uniform Interface is a central feature of the REST architectural style that distinguishes
it from other network-based styles. The Web’s components (e.g. clients, servers, reverse
proxy) depend on the interface uniformity for their interaction and communication. Fielding
identifies four constraints of the uniform inform interface [Fielding (2000), Masse (2011)]:

• Identification of Resources:
where each concept (known as a resource) may be addressed by a unique identifier such
as a URI.

• Manipulation of Resources through Representations:
where the representation is a means to interact with the resource but is not the
resource, itself.

• Self-Descriptive Message:
where a resource’s desired state can be represented within a client’s request message; a
resource’s current state may be represented within a server’s response message;
metadata may be included to convey addition information on the resource (e.g. resource
state, representation format).

• Hypermedia as the Engine of Application State (HATEOAS)
where a resource’s state representation includes links to related resources.

RESTful Web APIs are designed according to the REST architectural style and leverage the
existing Hypertext Transfer Protocol (HTTP) as the application communication protocol.
HTTP specifies that resources be retrieved via a unique identifier or Uniform Resource
Identifier (URI) that corresponds to their server-side representation [HTTP/1.1 (1999)].
The representation of the resource may be supported by one or more formats (e.g., HTML,
XML, CSV, JSON, ATOM and JPEG). HTTP serves as the basis for the uniform interface
constraint of the REST architectural style (mentioned above).

Leonard Richardson developed a RESTful Web API Maturity Model consisting of four levels;
each level declares an aspect of the Web’s Uniform Interface that a RESTful Web API must
be satisfied for a given maturity level. [Richardson (2008), Fowler (2010)]

• Level 0

RESTful API Web Design

Page 10 of 163

• Must use the HTTP protocol for communication transport

At this level, HTTP is essentially used as a tunneling mechanism. For example, Web
Services using SOAP send messages with the HTTP POST method to the same URL;
the operation to be invoked is communicated in the body of the SOAP message.

• Level 1
• Meets Level 0 requirements
• Must use Resources

This level establishes resources and their management through the communication of
their state representation.

• Level 2
• Meets Level 1 requirements
• Must use HTTP Verbs and HTTP Response Codes

This level requires that all Create, Read, Update and Delete (CRUD) data management
operations performed on a resource must use the established HTTP methods (e.g.
POST, GET) for those operations. All message confirmations (i.e. success or failure)
must use the established HTTP response status codes.

• Level 3
• Meets Level 2 requirements
• Must use Hypermedia controls

This level is referred to as Hypertext As The Engine of Application State (HATEOAS). A
Resource’s current state representation may include hypermedia controls (i.e. links) that
provide the requesting system (i.e. Service Consumer) a set of possible next steps (i.e.
operations) in the context of systems interacting to realize a use case.

Recall that Fielding [Fielding (2000)] defined Level 3 as pre-requisite to being RESTful.
Therefore, this document is written to support a Level 3 maturity level.

RESTful API Web Design

Page 11 of 163

 Purpose
The RESTful Web API Design Standard is targeted for both the API designer and the
application developer as a specification supporting the design and implementation,
respectively, of component or system interfaces exposed on the web according to the REST
architectural style.

It describes the techniques, patterns and formats with associated rules that are necessary
for the consistent design and use of OAGi’s RESTful Web APIs. The majority of the
document is intended to be independent of any specific resource representation format; any
information that is specific to a given format (e.g. JSON) is documented in a section
dedicated to that format.

The document offers guidance to the API designer in developing and maintaining RESTful
Web API Specifications, including the following primary activities:

• Determining the resource model for the service being designed and enhanced.
• Designing a URI scheme for identifying the resources that comprise the service.
• Identifying the HTTP methods and any additional parameters that will be used to

manage the resources.
• Designing and implementing the resource representations that are supported by each

method.

In addition, application developers may use the specification as a general reference guide,
as a design point for RESTful Web API implementations, or as a supplement to a given
RESTful Web API’s specification.

 Scope and Applicability
This specification explains how to design interoperable OAGi RESTful Web APIs.

This specification applies to all systems (internally developed or purchased from third
parties) that expose OAGi RESTful Web APIs.

 Goal of This Specification
This specification describes the techniques, patterns, formats and associated rules that are
necessary for the consistent design and use of OAGi’s RESTful Web APIs. As such, it forms
a common basis upon which OAGi’s RESTful Web API Specifications should be developed
and maintained. A given RESTful Web API Specification, designed to meet certain
integration requirements, may not address the full breadth or scope of design
considerations addressed in this specification.

 Definitions and Terminology

2.4.1 Definitions

Application Programming Interface (API)
An Application Programming Interface (API) is a named set of operations (functions and
data) that is offered by a service provider (i.e., Server) and used by service consumer (i.e.,
Client) to enable communication between the components.

Backwards Compatibility
Backwards Compatibility means that a new version of an API does not break clients
programmed to a previous version of the API. This means that a client, programmed to a

RESTful API Web Design

Page 12 of 163

previous version of an API, can continue to communicate with a server, programmed to a
the new version of an API, without any negative impact.

Bug Fix
A bug fix is an internal change that fixes incorrect behavior. [Preston-Werner]

Business Component
Business Component is a component that is an implementation of an autonomous business
concept or process. Responsibility within the business component may be allocated to one
or more logical tiers (i.e., User Interface or User, User Dialog or Workspace, Business Logic
or Enterprise, Business Type or Resource). A business component may have one tier of
each kind and each tier may be implemented by one or many distributed components.
[Herzum (2000)]

Client
Client represents either a component or system that acts as a consumer of services.

Client-Server
Client-Server is a hierarchical architectural style for network-based applications. A server
offers a set of services and listens for requests upon those services. A client, desiring a
service to be performed, sends a request to the service. The server either rejects or
performs the request and sends a response back to the client. [Fielding (2000)]

Component
Component is a self-contained piece of software that can be independently deployed and
plugged into an environment with a compatible socket; it has a well-defined and network
addressable runtime interface and can collaborate with other components. The term is used
to represent both Distributed Components and Business Components. [Herzum (2000)]

Controller
A controller resource models a procedural concept. It encapsulates application specific
actions that cannot be logically mapped to one of the standard methods (create, retrieve,
update, and delete, also known as CRUD). [Masse (2011)]

Collection Resource
A collection resource is a server-managed directory of resources. Clients may propose new
resources to be added to a collection. However, it is up to the collection to choose to create
a new resource, or not. A collection resource chooses what it wants to contain and also
decides the URIs of each contained resource. [Masse (2011)]

Distributed Component
Distributed Component is a component that in terms of granularity is the smallest
component that offers interfaces. Tiers of the business component are often implemented as
distributed components. [Herzum (2000)]

Entity
The information transferred as the payload of a request or response. An entity consists of
metainformation in the form of entity-header fields and content in the form of an entity-
body. [Fielding et al (1999)]

Entity Body
An entity-body is only present in a message when a message-body is present. If present,
the entity-body sent with an HTTP request or response is in a format and encoding defined
by the entity-header fields. [Fielding et al (1999)]

Hypertext Transfer Protocol (HTTP)

RESTful API Web Design

Page 13 of 163

Hypertext Transfer Protocol is an application layer protocol for distributed, collaborative,
hypermedia information systems. HTTP has been used by the World Wide Web since 1990.
[Fielding et al. (1999)]

Instance Resource
An instance resource is a singular concept that is akin to a document instance or database
record. An instance resource may have child resources that represent its specific
subordinate concepts. [Masse (2011)]

Instance Resource Set (or Set of Instance Resources)
An instance resource set is a set of instance resources that is determined by a server (at a
point in time) to satisfy the set’s membership criteria (i.e., selection, filter, expansion and
search criteria) of a resource management operation (e.g. GET request) upon a collection
resource.

Interaction
An Interaction identifies the messages exchanged between systems or components in the
context of a collaboration; it includes the sequencing of these message send/receive events.

JavaScript Object Notation (JSON)
JSON is a lightweight computer data interchange format derived from JavaScript
Programming Language. It is a text-based, human-readable format for representing
collections of name/value pairs (i.e. objects) and ordered list of values (i.e. arrays).
[JSON.org] [Zyp et al. (2013a)]

Message
Message is a definition (or specification) of conveyance of information from a sender to a
receiver.

aMethod Message
aMethod Message is a request message defined with an HTTP method (e.g., OPTIONS,
GET, HEAD, POST, PUT, and DELETE. For example, a GET Message is a message defined
with the GET method.

Message Body
The message-body (if any) of an HTTP message is used to carry the entity-body associated
with the request or response. The message-body differs from the entity-body only when a
transfer-coding has been applied to the entity-body, as indicated by the Transfer-
Encoding header. [Fielding et al. (1999)]

Message instance
Message Instance is an instance of a message that complies with the Message.
Object Class
Object Class is a set of ideas, abstractions, or things in the real world that are identified
with explicit boundaries and meaning and whose properties and behavior follow the same
rules. [ISO 11179 (2003)]

Origin Server
The server on which a given resource resides or is to be created. [Fielding et al. (1999)]

Representational State Transfer (REST)
Representational State Transfer (REST) is a description of an architectural style that was
developed by Roy Fielding in 2000 through derivation of the Web’s architectural style.

Request Message (or Client Request Message)
A message sent from a client to a server.

aMethod Request

RESTful API Web Design

Page 14 of 163

A request is a message instance (i.e., Request) that is communicated with an HTTP method
(e.g., OPTIONS, GET, HEAD, POST, PUT, and DELETE); it is used to request information
from a server.

Resource
Resource is a concept that can be referenced by a unique identifier and manipulated by the
uniform interface. [Masse (2011)] “Any information that can be named can be a resource:
a document or image, a temporal service (e.g. “today’s weather in Los Angeles”), a
collection of other resources, a non-virtual object (e.g. a person), and so on.” [Fielding
(2000)] A REST API is composed of 4 distinct resource archetypes: document, collection,
store, and controller. [Masse (2011)]

Resource State Representation
Resource State Representation is the rendered state of a resource in a representation (e.g.
JSON, XML). A resource’s desired state can be represented in a client’s request message. A
resource’s current state can be represented in a server’s response message. [Masse (2011)]

Response Message (or Server Response Message)
A message sent from a server to client, that defines the result of a request message.

aMethod Response Message
aMethod Resonse Message is a response message that defines the result from a aMethod
Message (defined with an HTTP method (e.g., OPTIONS, GET, HEAD, POST, PUT, and
DELETE). For example, GET Response Message is a message that defines the response
defined with the GET method.

aMethod Response
A request’s response is a message instance that is communicated in response to aMethod
Request.

RESTful Web API
RESTful Web API is a Web API that conforms to the Web’s REST architectural style.

Request (or Client Request)
Request is a message instance sent from a client component to a server component. It is
defined with one of the client request methods: OPTIONS, GET, HEAD, POST, PUT and
DELETE.

Response (or Server Response)
Response is a message instance sent from a server component to a client component as a
result of a client component’s request to a server component.

Resource Model
The resource model describes an API’s key concepts that are exposed in the API’s URIs’
path.

Server
Server is a component or system that acts as a provider of services.

Service
Service is a software program that makes its functionality available via a published technical
interface. [Erl et al. (2012)]

Status Monitor
A Status Monitor is a type of Controller. Its job is to encapsulate the processing required to
determine if an asynchronous unit of work has completed.

System

RESTful API Web Design

Page 15 of 163

A System (also known as a Business Component System) is a composition of business
components assembled together to deliver a solution to a business problem (i.e.
application). [Herzum (2000)]

Uniform Resource Identifier (URI)
A Uniform Resource Identifier (URI) is a compact sequence of characters that uniquely
identifies an abstract or physical resource. [Berners-Lee (2005)]

URI Template
A URI Template is a compact sequence of characters for describing a range of Uniform
Resource Identifiers through variable expansion. [Gregorio (2012)]

User Agent
User Agent is the client that initiates a request. These are often browsers, editors, spiders
(web-traversing robots), or other end user tools. [Fielding et al. (1999)]

Web API
Web API is an Application Programming Interface (API) to a Web Service (i.e. a Service
exposed on the World Wide Web).

2.4.2 Terminology

This document uses the following terminology:

1. MUST: This word means that the requirement is absolutely REQUIRED to
be implemented with no exceptions.

2. MUST NOT: This phrase means that the requirement specifies an
absolute PROHIBITION and is not to be implemented.

3. SHOULD: This word means that the requirement is REQUIRED unless an
exception has been granted through the exception process.

4. SHOULD NOT: This phrase means that the requirement is REQUIRED
NOT to be implemented unless an exception has been granted through the
exception process.

5. MAY: This word means that the requirement is OPTIONAL.

Note: Terminology adapted from Scott O. Bradner, “Key words for use in RFC’s to Indicate
Requirement Levels,” The Internet Engineering Task Force (IETF) RFC (Requests for
Comments) 2119, March 1997.

RESTful API Web Design

Page 16 of 163

3 Rationale
This specification establishes a set of techniques, patterns and formats with associated rules
that must be reused and common to OAGi’s RESTful Web APIs. This offers consistency in
the design and use across OAGi’s RESTful Web APIs; benefits include:

• Agility in API design and implementation for the Service Provider
• Ease of API adoption and use by Service Consumers (e.g. Clients)

4 Versioning
A Web API realizes a Web API Specification. A given specification has a distinct version. A
specification may comprise several constituent parts that are separately managed artifacts.
As with the specification, these managed artifacts are also versioned. Referring to Figure 1,
an API operation may have its request message body defined in a separately managed
schema (e.g. a noun schema); further, the request message body schema may be
composed of other separately managed schemas (e.g. component or field schemas). Each
of these separately managed schemas is versioned. Changes to the separately managed
schemas affects not only their version identifier(s), but also the version identifier(s) of the
specifications that reference them.

Figure 1: API Specification Versioning and Dependency

RESTful API Web Design

Page 17 of 163

Each managed artifact must be versioned with a major version identifier, minor version
identifier and patch version identifier. An increment in the patch version identifier indicates
a bug fix that resolves incorrect behavior. An increment of the minor version identifier
indicates a new version of the artifact that maintains backwards compatibility. An
increment of the major version identifier indicates a new version of the artifact that breaks
backwards compatibility. [Preston-Werner]

For any version identifier (major, minor or patch) or revision identifier, the
following rules apply:

R1 A version identifier MUST be a non-negative integer.
R2 A version identifier MUST begin with the number 0.
R3 A version identifier MUST be incremented by 1.
R4 When a major version identifier is incremented, the minor and patch version

identifiers MUST be reset to 0.

For any artifact (Web API or constituent part), the following rules apply:

R5 Version and revision information MUST be expressed in the form

majorVersionID.minorVersionID.patchVersionID

R6 Use of 0 for a major version identifier MUST be limited to initial development.
R7 Version 1.0.0 MUST be used the initial public version.
R8 The major version identifier MUST be incremented when a new public version is

created/issued that breaks backwards compatibility.
R9 The minor version identifier MUST be incremented when a new public version is

created/issued that maintains backwards compatibility.
R10 The patch version identifier MUST be incremented when a bug fix is introduced.

1.5.2

Representation of the Web API version information in the exposed operational interface is
described, below, in the section URI Design and Format.

 Backwards Compatibility
A new version of a Web API is backwards compatible if it does not break clients using a
previous version of the API. This means that a client, using a previous version of an API,
can continue to use the new version of that API, offered on a server, without any negative
impact. With a backwards compatible API change, a client, implementing an API’s previous
version, will experience the same behavior from a server, implementing the API’s new
version. Only those clients, implementing the API’s new version, will experience the new
behavior from a server, implementing the API’s new version.

RESTful API Web Design

Page 18 of 163

R12 Clients MUST be designed to ignore data elements that are not recognized.1

The following examples illustrate some cases when backwards compatibility is maintained
and when it is broken.

An API maintains backwards compatibility in cases when:

• An optional property is added.
• A value is added to a data element’s value domain (enumeration).2
• The metadata of a property is expanded

(e.g. reduced minimum size, increased maximum size)
• An optional operation is added
• An optional query parameter is added

An API breaks backwards compatibility in cases when:
• A property is changed from optional to mandatory
• A property is removed.
• A property that is mandatory is added.
• A value is removed or changed from a data element’s value domain (enumeration).
• The metadata of a property is restricted or changed

(e.g. different data type, increased minimum size, reduced maximum size).

1 According to the robustness principle, also known as Postel’s law, which states “Be
conservative in what you send, be liberal in what you accept.”
2 While technically the addition of a value to a data element’s domain doesn’t break the
interface’s backwards compatibility, the addition might require the client, itself, to change, if
for example, the addition is associated with a mandatory compliance requirement.

RESTful API Web Design

Page 19 of 163

5 Message Architecture
Messages of a RESTful Web API adhere to the HTTP message architecture. All HTTP
messages (client request messages and server response messages) may comprise three
components:

• start-line
• message-header
• message-body

The start-line represents the client request-line in the case of a request and the status-line
in the case of a response. The request start-line includes the HTTP method, a URI that
identifies the resource, and the HTTP version number. The response status-line contains
the HTTP version number, a number indicating the status of the request and a short phrase
describing the status.

The message headers are used to transfer a variety of data between message senders (e.g.
clients and servers) and receivers (e.g. clients, intermediary caches and servers). Some
headers transfer control data between message senders and receivers. When set by a
client, such headers communicate client data used by a server to control its response to the
client (e.g. preferred format); when set by a server, such headers communicate server data
used by a client to control requests to the server (e.g. time duration to wait before retrying
a failed request). Control data also includes directives for intermediary caches. Other
headers transfer metadata (e.g. expiration date and time) on the resource representation in
the message-body.

The message-body carries the entity-body of the request or response message. A common
use of the entity-body is in the response message to convey the state of a request
message’s identified resource. An entity-body differs from the message-body only if a
transfer-coding3 has been applied to the message-body. [Fielding et al (1999)] Figure 2
shows the architecture of the HTTP message.

3 Transfer-codings are applied by the application to ensure safe and proper transfer of the
message. Note: The header applies to the message, not the entity.

RESTful API Web Design

Page 20 of 163

The HTTP/1.1 specification defines rules for when a message-body is allowed in a message;
it differs for request and response messages. [Fielding et al (1999)]

For requests, the presence of a message-body is indicated by the inclusion of a Content-
Length or Transfer-Encoding header in the message-headers.

R13 A message-body MUST NOT be included in a request if the specification of the
request method does not allow sending an entity-body in requests.

R14 A server SHOULD read and forward a message-body on any request.
R15 If the request method does not include defined semantics for an entity-body,

then the message-body SHOULD be ignored when handling the request.

For responses, the presence of message-body is dependent upon both the request method
and the response status code. Details specific to a given request method are described
below in the Confirmation Management section.

The components of the HTTP message and the details of their use, as part of RESTful Web
API messages, are described in the sections that follow.

Figure 2: HTTP Message Architecture

RESTful API Web Design

Page 21 of 163

6 Message Headers
This section describes the message headers and their related usage rules. Related usage
rules that are dependent to a resource management or confirmation management context
are documented in their respective sections. For example, the confirmation management
section describes the response header(s) that must be returned in a server response,
conditional on the results status of processing the client request.

There are four types of HTTP message-headers [Spainhour (1996)] [Fielding et al. (1999)]:

• general-header – a header that has general applicability for both request and response
messages and do not apply to the entity being transferred;

• request-header – a header that allows the client to communicate information about the
request and about the client itself to the server;

• response-header –a header that allows the server to pass information about the
response (that cannot be communicated in the status-line), about the server, and about
further access to the resource (identified in the request URI) to the client;

• entity-header – a header that provides information on the entity-body or, if no entity-
body is present, about the resource identified in the request.

All message-headers follow the same format: a field name followed by a colon, “:” and the
field value. The field-value should be preceded by a single space (SP). Message-headers
may extend over multiple lines by preceding each extra line with at least one space (SP) or
horizontal-tab (HT).

Although the order in which headers of different field names are received is not significant,
it is good practice to send general-headers first, followed by request-headers or response-
headers, and ending with entity-headers. [Fielding et al. (1999)]

HTTP allows for multiple occurrences of a message-header with the same field name.
However, it must be possible to combine the multiple headers into one field-name: field-
value pair without changing the semantics of the message; each subsequent field-value is
appended to the preceding field-value, separated by a comma. The order of the headers
with the same field name is significant to the interpretation of the combined field-value.
Therefore, the order of these headers must not be changed.

Subsections, below, describes the HTTP message-headers and their expected use.

Note: Use of the HTTP message-headers in this specification is intended to consistent with
the HTTP message-header as defined in W3C’s HTTP 1.1 specification. Any modifications, in
regard to the use of the HTTP response status codes in this specification, are limited to
changes in requirement levels (e.g. change of requirement from a SHOULD to a MUST) or
the addition of details specific to their use in a RESTful Web API. The purpose of these
modifications is to constrain the space of response code usage to that required for partner
interaction in a trading community.

There are about 50 HTTP message-headers. A subset of these headers is used in this
specification.

Note: Security standards on authentication and authorization are separately managed and
documented. Furthermore, the use of security-related HTTP headers may vary by the
security solution (e.g. OAuth). While this document provides an overall view the HTTP
headers used, readers must use the appropriate security standard for specific guidance of
the use these HTTP headers.

R16 Any HTTP header not mentioned in this section MUST NOT be used.

RESTful API Web Design

Page 22 of 163

 General Headers
A general header has general applicability for both request and response messages and
does not apply to the entity being transferred.

Header
Field
Name

Obligation4 Format & Description Condition

Cache-
Control

Conditional
- in request
- in response

“Cache-Control” “: ”directives
Specifies directives that must be
obeyed by all caching
mechanisms along the
request/response chain.

Conditions
• Applicable security

standard
requirements.

• Application (API)
requirements

• Caching requirements

Date Optional
- in request
Mandatory
- in response

“Date” “: ”datetime
Indicates the date and time when
the message originated.

Pragma Conditional
- in request
- in response

“Pragma” “: ” directives
Specifies implementation-specific
directives that might apply to any
recipient along the
request/response chain.

Conditions
• Applicable security

standard
requirements

• Application (API)
requirements

• Caching requirements

R17 The Cache-Control header MUST be used to specify cache directives (i.e., field values)
that are to be obeyed by all caching mechanisms along the request/response chain.

“Cache-Control” “: ”directives

Cache directives are classified into Cache request directives (i.e., directives that may be
included on requests) and Cache response directives (i.e., directives that may be included
on responses).

4 Obligation values are: Mandatory, Conditional, and Optional. Mandatory headers must
exist and must conform to the provisions of this specification. Conditional headers must be
treated as Mandatory if the associated condition is satisfied. Optional headers are not
required, but if they exist they must conform to the provisions of this specification.

Table 1: General Headers

RESTful API Web Design

Page 23 of 163

R17.1 The directives field value for request directives MUST be limited to an element of the
value domain:
“no-cache”,
“no-store”,

R17.1.1 The no-cache field value MUST be used to instruct the caching mechanism that
the response, elicited by the request, must not be used to satisfy a subsequent
request without successful revalidation with the origin server.

R17.1.2 The no-store field value MUST be used to inform a caching mechanism to not
store any part of either the request or any response to it.

R17.2 The directives field value for response directives MUST be limited to an element of
the value domain:
“no-cache” “=” field-name,
“max-age” “=” seconds,
“must-revalidate”,
“no-store”.

R17.2.1 If the no-cache field value does not specify a field-name, then it MUST be used
to instruct the caching mechanism that the response must not be used to satisfy a
subsequent request without successful revalidation with the origin server.

R17.2.2 If the no-cache field value does specify one or more field-name(s), then it MUST
be used to instruct the caching mechanism that the response may be used to
satisfy a subsequent request; however, the specified field-name(s) must not be
sent in the response to a subsequent request without revalidation with the original
server.

Note: This allows an origin server to prevent re-use of certain header fields in a
response (e.g. a Cookie header) while allowing the remainder of the response to
be cached.

R17.2.3 The max-age= seconds field value MUST be used to inform a caching
mechanism that the response is considered stale after the specified number of
seconds from the time of making the request for the resource.

R17.2.4 The must-revalidate field value MUST be used to inform a caching mechanism
that it must revalidate a cache entry on any subsequent use if the cached
response is stale.

R17.2.5 The no-store field value MUST be used to inform a caching mechanism to not
store any part of the response of the request that elicited it.

R17.3 A request or response MAY include the Cache-Control header.

RESTful API Web Design

Page 24 of 163

R18 The Date header MUST be used to indicate the date and time when the message
originated.

“Date” “: ”datetime

R18.1 The datetime field value MUST adhere to the format and value domains as specified
in IETF’s RFC 1123 (an update to RFC 822).

R18.2 A request MAY and a response MUST include the Date header.

Note: The Date header along with the Expires header in a response allow clients to
determine the freshness of a resource representation. [Masse (2011)]

R19 The Pragma header MUST be used to specify implementation-specific directives (i.e.,
field values) to any recipient along the request/response chain.

“Pragma” “: ” directives

Note: HTTP 1.1. prefers use of the Cache-Control header.

R19.1 The directives field value response directives MUST be limited to an element of the
value domain:
no-cache

R19.1.1 The no-cache field value MUST be used to instruct the proxy to not cache the
resource representation.

Note: The Pragma: no-cache directive has the same semantics as the Cache-
Control: no-cache directive. The Pragma directive is allowed for HTTP 1.0
backwards compatibility. HTTP 1.1 prefers use of the Cache-Control: no-cache
header.

R19.2 A request or response MAY include the Pragma header.

Examples of the general headers are shown below:

Cache-Control: no-cache

Date: Sun, 06 Nov 1994 08:49:37 GMT

Pragma: no-cache

 Request Headers
A request header allows the client to communicate information about the request and about
the client itself to the server.

RESTful API Web Design

Page 25 of 163

Header Field
Name

Obligation4 Format & Description Condition

Accept Mandatory
- in request

“Accept” “: ” (“*/*” |
(type“/” “*”) |
(type“/”subtype))
[“; ” “q” “=”qvalue]
[";" "masked" "=" "true" |
"false"]
Describes media type(s) and
subtype(s) that are acceptable for
the response. The optional
qvalue represents an acceptable
quality level for acceptable types.

Accept-
Charset

Mandatory
- in request

“Accept-Charset” “: ” (
character-set |
“*”)
 [“; ” “q” “=”qvalue]
Specifies the character set(s) that
are acceptable for the response.
The optional qvalue represents a
quality level for acceptable
languages.

Accept-
Encoding

Conditional
- in request

“Accept-Encoding” “: ” (
encoding-scheme |
“*”)
[“; ” “q” “=”qvalue]
Specifies the encoding
scheme(s) used for the entity-
body that are acceptable for the
response. The optional qvalue
represents a quality level for
acceptable content codings.

Conditions
• Application (API)

requirements, the entity-
body may require
encoding to ensure safe
and proper transfer.

Accept-
Language

Conditional
- in request

“Accept-Language” “: ” (
language |
“*”)
 [“;” “q” “=”qvalue]
Specifies the language(s) that
are acceptable for the response.
The optional qvalue represents a
quality level for acceptable
languages.

Conditions
• Application (API)

requirements.

Authorization Conditional
- in request

“Authorization” “: ”scheme
credentials
Provides the client’s authorization
to access the resource
representation at a URI.

Conditions
• Applicable security

standard requirements.

RESTful API Web Design

Page 26 of 163

Header Field
Name

Obligation4 Format & Description Condition

Cookie Conditional
- in request

“Cookie” “: ”name “=” value
Contains name/value pairs (i.e.,
cookies) for that URI previously
sent by the server with the Set-
Cookie header.

Conditions
• Applicable security

standard requirements.
• Application (API)

requirements, used to
identify a user’s state.

Host Mandatory
- in request

“Host” “: ” hostname [“:”port]
Specifies the host and port
number of the URI.

If-Match Conditional
- in request

“If-Match” “: ” “*” | entity-tag
Used with a method to make it
conditional; the method is
performed only if the client entity
(via the given entity tag, ETag
header) matches the server
entity.

Conditions
• Application (API)

requirements, used as a
concurrency control
mechanism for Update
requests.

• Caching requirements

If-Modified-
Since

Conditional
- in request

“If-Modified-Since” “: ”
datetime
Used with a method to make it
conditional; the method is
performed only if the resource
representation has been modified
since the date given in this
header.

Conditions
• Application (API)

requirements
• Caching requirements

If-None-
Match

Conditional
- in request

“If-None-Match” “: ” “*” |
entity-tag
Used with a method to make it
conditional; the method is
performed only if the client entity
(via the given entity tag, ETag
header) does not match the
server entity.

Conditions
• Application (API)

requirements, used as a
concurrency control
mechanism for Update
requests.

• Caching requirements

If-Range Conditional
- in request

“If-Range” “: ”entity-tag |
datetime
Used to specify a conditional
request for a portion of the entity
that is missing if it has not
changed and the entire entity if it
has changed.

Conditions
• Client has a partial copy

of an entity and needs
an updated copy of the
entire entity.

• Caching requirements

RESTful API Web Design

Page 27 of 163

Header Field
Name

Obligation4 Format & Description Condition

If-
Unmodified-
Since

Conditional
- in request

“If-Unmodified-Since” “: “
datetime
Used with a method to make it
conditional; the method is
performed only if the resource
representation has not been
modified since the date given in
this header.

Conditions
• Application (API)

requirements
• Caching requirements

Prefer Conditional
- in request

“Prefer” “: “ preference
 preference = token [“ = ”
value] *[" ; "
parameter "=" value]
Used to indicate that particular
server behaviors are preferred by
the client.

Conditions
• Application (API)

requirements

Range Conditional
- in request

“Range” “: ” byte-range |
range-specifier
Specifies the partial range(s)
requested of an entity.

Conditions
• Efficient recovery from

partially failed transfers.
• Efficient partial retrieval

of large entities.

Referer Conditional
- in request

“Referer” “: ” uri
Provides the URI of the resource
from which the requested URI
was obtained.

Conditions
• Applicable security

standard requirements.

• Application (API)
requirements

• Logging requirements
• Caching requirements

User-Agent Conditional
- in request

“User-Agent” “: user-agent

user-agent = ”product [“/”
product-version] | comment
Provides identifying information
on the client.

Conditions
• Application (API)

requirements, used for
statistical purposes,
tracing protocol
violations and
automated recognition of
user-agents.

Table 2: Request Headers

RESTful API Web Design

Page 28 of 163

R20 The Accept header MUST be used to describe the media type, subtype and masking
criteria that are acceptable for the response.

“Accept” “: ” (“*/*” | (type“/” “*”) |
(type“/”subtype)) [“; ” “q” “=”qvalue] [";" "masked" "=" "true" | "false"]

Note: “*/*” matches all media types; type“/” “*” matches all subtypes of that type.

R20.1 The type/subtype value MUST adhere to the value domain governed by IANA as the
set of registered media types.

Note: See the IANA Registry of MIME Media Types [IANA].

R20.2 Using the q parameter, each type/subtype value MAY be associated with a quality
value (qvalue).

R20.2.1 The quality value MUST range between “0” and “1” and adhere to the format and
value domain as specified in IETF’s RFC 2616. If no quality value has been
specified, then the quality value defaults to “1”.

Note: The quality value represents the user’s preference. A quality value of “1”
indicates the user’s preferred media type.

Note: See RFC 2616 [Fielding et al. (1999)].

R20.4 A request MUST include the Accept header.

R20.5 Using the masked parameter, each type/subtype value MAY be associated with a
masked value.

R20.6 The masked value MUST be limited to an element of the value domain:
“true”,
“false”.

R20.6.1 The "true" value MUST be used by the client to indicate that masked sensitive data is
acceptable for the response.

R20.6.2 The "false" value MUST be used by the client to indicate that unmasked sensitive data
is acceptable for the response.

R20.7 If the masked parameter is missing from the request, then the default interpretation
MUST be "masked = true".

RESTful API Web Design

Page 29 of 163

R21 The Accept-Charset header MUST be used to specify the character set(s) that are
acceptable for the response.

“Accept-Charset” “: ” (character-set | “*”)
 [“; ” “q” “=”qvalue]

Note: “*” matches all character sets.

R21.1 The character-set value MUST adhere to the value domain governed by IANA as the
set of registered character sets.

Note: See the IANA Registry of Character Sets [IANA(2013d)].

R21.2 Using the q parameter, each character set value MAY be associated with a quality
value (qvalue).

R21.2.1 The quality value MUST range between “0” and “1” and adhere to the format and
value domain as specified in IETF’s RFC 2616. If no quality value has been
specified, then the quality value defaults to “1”.

Note: The quality valued represents the user’s preference. A quality value of “1”
indicates the user’s preferred character set.

Note: See RFC 2616 [Fielding et al. (1999)].

R21.3 If the character set of the Accept-Charset header cannot be generated then the
server SHOULD return a 406 Not Acceptable status code.

R21.5 A request MUST include the Accept-Charset header.

R22 The Accept-Encoding header MUST be used to specify the encoding scheme(s) used
for the entity-body that the client can accept.

“Accept-Encoding” “: ” (encoding-scheme | “*”)
[“; ” “q” “=”qvalue]

Note: “*” matches all encoding schemes.

R22.1 The encoding-scheme value MUST be limited to an element of the value domain
governed by IANA as the set of registered HTTP content-coding values.

Note: See the IANA Registry of HTTP Content-Coding Values [IANA(2013c)].

R22.2 Using the q parameter, each encoding scheme value MAY be associated with a
quality value (qvalue).

RESTful API Web Design

Page 30 of 163

R22.2.1 The quality value MUST range between “0” and “1” and adhere to the format and
value domain as specified in IETF’s RFC 2616. If no quality value has been
specified, then the quality value defaults to “1”.

Note: The quality valued represents the user’s preference. A quality value of “1”
indicates the user’s preferred encoding scheme.

Note: See RFC 2616 [Fielding et al. (1999)].

R22.3 If the content code of the Accept-Encoding header cannot be generated then the
server SHOULD return a 406 Not Acceptable status code.

R22.5 A request MAY include the Accept-Encoding header.

R22.6 If no Accept-Encoding header is present in a request, the server MAY assume that
the client will accept any content coding.

R23 The Accept-Language header MUST be used to specify the language(s) that are
acceptable for the response.

Accept-Language” “: ” (language | “*”)
 [“;” “q” “=”qvalue]

Note: “*” matches all languages.

R23.1 The language value MUST adhere to the format and value domains as specified in
IETF’s RFC 5646.

Note: See RFC 5646 [Phillips, A., Davis, M. (2009)].

R23.2 Using the q parameter, each language value MAY be associated with a quality value
(qvalue).

R23.2.1 The quality value MUST range between “0” and “1” and adhere to the format and
value domain as specified in IETF’s RFC 2616. If no quality value has been
specified, then the quality value defaults to “1”.

Note: The quality valued represents the user’s preference. A quality value of “1”
indicates the user’s preferred language.

Note: See RFC 2616 [Fielding et al. (1999)].

R23.3 If the content code of the Accept-Language header cannot be generated then the
server SHOULD return a 406 Not Acceptable status code.

R23.5 A request MAY include the Accept-Language header.

RESTful API Web Design

Page 31 of 163

R245 The Authorization header MUST be used to provide the client’s authorization to access
the resource representation at a URI.

“Authorization” “: ”scheme credentials

Note: For a resource requiring authorization, the server will return to a user agent, that
attempted to access that resource without the proper credentials, a 401 Unauthorized
response including a WWW-Authenticate header that describes the type of authorization
required.

R245.1 The scheme credentials field value MUST adhere to the format and value domains
of the applicable security standard.

R245.2 A user agent that wishes to authenticate itself with a server, after receiving a 410
Unauthorized response MUST include the Authorization header.

R24 The Cookie header MUST be used to contain name/value pairs for that URI previously
sent by the server with the Set-Cookie header.

“Cookie” “: ”name “=” value

R24.1 The name = value field value SHOULD adhere to the format and value domains as
specified in IETF’s RFC 6265.

 Note: See IETF RFC 6265 [Barth (2011)].

R24.2 A request MAY contain the Cookie header.

R25 The Host header MUST be used to specify the host name and optionally port number of
the resource being requested, as obtained from the URI.

“Host” “: ” hostname [“:”port]

R25.1 The hostname and port field value SHOULD adhere to the format and value
domains as specified in IETF’s RFC 2616 syntax for host representation.

Note: See RFC 2616 [Fielding et al. (1999)].

R25.2 A request MUST include the Host header.

R26 The If-Match header MUST be used with a method to make it conditional; the method is
performed only if the client entity (via the given entity-tag, ETag header) matches the
server entity.

“If-Match” “: ” “*” | entity-tag

RESTful API Web Design

Page 32 of 163

R26.1 The If-Match field value MUST be limited to an element of the value domain:
“*”,
entity-tag,

R26.1.1 The “*” field value MUST be used to match any entity at the server.

R26.1.2 The entity-tag field value SHOULD adhere to the format and value domains as
specified in to IETF’s RFC 2616 for entity tag representation.

Note: See RFC 2616 [Fielding et al. (1999)].

R26.2 If any of the entity tags supplied in the request matches the entity tag (that would
have been returned in the response to a GET request on that resource), then the
method MAY be performed by the server.

R26.3 If “*” is supplied in the request and any current entity exists for that resource, then the
method SHOULD be performed by the server.

R26.4 If none of entity tags supplied in the request match the entity tag of the entity (that
would have been returned in the response to a GET request) or if “*” is given and no
current entity exists, then the server MUST NOT perform the requested method and
MUST return a 412 Precondition Failed status code in the response.

R27 The If-Modified-Since header MUST be used with a method to make it conditional; the
method is performed only if the resource representation has been modified since the
date given in this header.

“If-Modified-Since” “: ” datetime

R27.1 The datetime field value MUST adhere to the format and value domains as specified
in to IETF’s RFC 1123 (an update to RFC 822).

R27.2 If the resource representation has been modified, then the method MAY be
performed by the server.

R27.3 If the resource representation has not been modified since the date provided in the If-
Modified-Since header, then the server MUST return a 304 Not Modified status
code in the response.

R27.4 Clients when sending the If-Modified-Since header SHOULD use the exact date
string received in a previous Last-Modified header.

R27.5 A request MAY include the If-Modified-Since header.

RESTful API Web Design

Page 33 of 163

R28 The If-None-Match header MUST be used with a method to make it conditional; the
method is performed only if the client entity (via the given entity-tag, ETag header) does
not match the server entity.

“If-None-Match” “: ” “*” | entity-tag

R28.1 The If-None-Match field value MUST be limited to an element of the value domain:
“*”,
entity-tag.

R28.1.1 The “*” field value MUST be used to match any entity at the server.

R28.1.2 The entity-tag field value SHOULD adhere to the format and value domains as
specified in IETF’s RFC 2616 syntax for entity tag representation.

Note: See RFC 2616 [Fielding et al (1999)].

R28.2 If any of the entity tags, supplied in the request, do not match the entity tag (that
would have been returned in the response to a GET request on that resource), then
the method MAY be performed by the server and MUST ignore any If-Modified
Since header in the request.

R28.3 If “*” is supplied in the request and the representation does not exist for that
resource, then the method SHOULD be performed by the server.

R28.4 If the entity tags, supplied in a GET or HEAD request, match the entity tag of the
entity (that would have been returned in the response to a GET request), then the
server MUST return a 304 Not Modified status code in the response.

R28.5 If any of the entity tags, supplied in a request (other than GET or HEAD request)
match the entity tag of the entity (that would have been returned in the response to a
GET request) or if “*” is given and any current entity exists for that resource, then the
server MUST NOT perform the requested method and MUST return a 412
Precondition Failed status code in the response.

R28.6 A request MAY include the If-None-Match header.

R29 The If-Range header MUST be used to specify a conditional request for a portion of the
entity that is missing if it has not changed and the entire entity if it has changed.

“If-Range” “: ”entity-tag | datetime

R29.1 The If-Range field value MUST be limited to an element of the value domain:
entity-tag
datetime

RESTful API Web Design

Page 34 of 163

R29.1.1 The entity-tag field value SHOULD adhere to the format and value domains as
specified in IETF’s RFC 2616 syntax for entity tag representation.

Note: See RFC 2616 [Fielding et al (1999)].

R29.1.2 The datetime field value MUST adhere to the format and value domains as
specified in IETF’s RFC 1123 (an update to RFC 822).

R29.2 The If-Range header SHOULD only be used in conjunction with the Range header.

R29.3 If the entity tag provided in the If-Range header matches the current entity tag for the
entity, then the server SHOULD return the sub-range of the entity using a 206 Partial
Content response.

R29.4 If the entity tag provided in the If-Range header does not match the current entity tag
for the entity, then the server SHOULD return the entire entity using a 200 OK
response.

R29.5 If the client has no entity tag for an entity but has the Last-Modified date, then the
client MAY use that date as the datetime field value of the If-Range header.

R29.6 A request MAY include the If-Range header.

R30 The If-Unmodified-Since header MUST be used with a method to make it conditional;
the method is performed only if the resource representation has not been modified since
the date given in this header.

“If-Unmodified-Since” “: “ datetime

R30.1 The datetime field value MUST adhere to the format and value domains as specified
in IETF’s RFC 1123 (an update to RFC 822).

R30.2 If the resource representation has not been modified, then the method MAY be
performed by the server.

R30.3 If the resource representation has been modified since the date provided in the If-
Modified-Since header, then the server MUST return a 412 Precondition Failed
status code in the response.

R30.4 A request MAY include the If-Unmodified-Since header.

R31 The Prefer header MUST be used to indicate that particular server behaviors are
preferred by the client, but not required for successful completion of the request.

“Prefer” “: “ preference
 preference = token [“ = ” value] *[" ; " parameter "=" value]

RESTful API Web Design

Page 35 of 163

R31.1 The preference field value MUST adhere to the format and value domains as
specified in IETF’s RFC 7240 for preference representation.

Note: See the RFC 7240 [Snell (2014)].

R31.2 The preference field value MUST be limited to an element of the value domain:

“respond-async”,
“wait” “ = ” time,
“return=representation”,
“return=minimal”,
“/oagi/confirm-message”,
“/oagi/long-polling”.

R31.2.1 The respond-async field value MUST be used to indicate that the client prefers
the server to respond asynchronously to a request.

R31.2.2 The wait = time field value MUST be used by the client to provide an upper bound
on the length of time, in seconds, the client expects it will take the server to
process the request one it has been received.

R31.2.3 The return=representation field value MUST be used to indicate that the client
prefers that the server include a representation of the current state of the resource
in the response to a successful request.

Note: This preference is intended to provide a means of optimizing communication
between the client and server by eliminating the need for a subsequent GET
request to retrieve the current resource representation following a modification
[Snell (2014)].

R31.2.4 The return=minimal field value MUST be used to indicate that the client prefers
that the server return a minimal response to a successful request.

Note: This preference is intended to reduce the amount of data the server is
required to return to the client following a request. The definition of what
constitutes a minimal response is at that the discretion of the server [Snell (2014)].

R31.2.5 The return=representation and return=minimal field values MUST NOT be
communicated in a single request.

R31.2.6 The /oagi/confirm-message field value MUST be used to indicate that the client
prefers that the server include a Confirm Message in the response.

R31.2.7 The /oagi/long-polling field value MUST be used to indicate that the client
prefers that the server uses the long polling server-push mechanism to respond to
a request.

RESTful API Web Design

Page 36 of 163

R31.2.8 If the request Prefer header preference field value specifies “respond-async”,
then the server MUST use an asynchronous communication model.

Note: In the general case, the Prefer header indicates a client preference; it is
possible that the server either not recognize or be unable to comply with the client
preference. See RFC 7240 Prefer Header [Snell (2014)]. However, in the more
specific case of a Web API contract, requirements on server behavior must be agreed
upon and supported.

R31.3 If the request Prefer header preference field value specifies “respond-async, wait =
time”, and if generating a response will take greater than the time specified, then the
server MUST use an asynchronous communication model.

Note: See Patterns for Asynchronous Communication section.

R31.4 If the request Prefer header preference field value specifies “respond-async, wait =
time”, and if generating a response will take less than or equal to the time specified,
then the server MUST use a synchronous communication model.

Note: See Patterns for Asynchronous Communication section

R31.5 If the request Prefer header preference field value specifies
“return=representation”, then the server MUST provide a representation of the
current state of the resource in the response message-body.

R31.6 If the request Prefer header preference field value specifies “return=minimal”, then
the server MUST return a minimal response.

Note: The definition of what constitutes a minimal response is at that the discretion of
the server [Snell (2014)].

R31.7 If the request Prefer header preference field value specifies “/oagi/confirm-
message”, then the server MUST provide a Confirm Message in the response
message-body.

Note: The client’s ability to request a Confirm Message is limited to those cases
where a Confirm Message is applicable. The cases are identified in the
Confirmation Management section.

R31.8 If the request Prefer header preference field value specifies “/oagi/long-polling”,
then the server MUST use the long polling server push mechanism to respond to the
client.

Note: The client’s ability to request a long polling is limited to those cases where long
polling is applicable (e.g. Event Notifications). See the Pattern for Event Notifications
section.

R31.9 A request MAY include the Prefer header.

RESTful API Web Design

Page 37 of 163

R32 The Range header MUST be used to specify the partial range(s) requested of an entity.

“Range” “: ” range-specifier

R32.1 The range-specifier field value, using a byte range, SHOULD adhere to the format
and value domains as specified in IETF’s RFC 2616 for byte range representation.

Note: See RFC 2616 [Fielding et al (1999)].

R32.2 If a server supports the Range header, the specified range(s) is appropriate for the
entity and the (unconditional or conditional) GET request is successful, then the
server modifies what is returned and MUST provide a 206 Partial Content response
(instead of the 200 OK response).

R33 The Referer header MUST be used to provide the URI of the resource from which the
requested URI was obtained.

“Referer” “: ” uri

R33.1 The uri field value MUST adhere to the format and value domains as specified in
IETF’s RFC 2616 syntax for URI representation.

Note: See RFC 2616 [Fielding et al (1999)] and RFC 3986 [Berners-Lee (2005)] .

R33.2 If the referrer has its own URI, a request MAY include the Referer header.

R34 The User-Agent header MUST be used to provide identifying information on the client.

“User-Agent” “: user-agent
user-agent = product [“/” product-version] | comment

R34.1 The user-agent field value SHOULD adhere to the format and value domains as
specified in IETF’s RFC 2616 for user agent representation.

Note: See RFC 2616 [Fielding et al (1999)].

R34.2 A request MAY include the User-Agent header.

Accept: application/json, application/xml

Accept: application/json; masked=true

Accept: application/json; masked=false

Accept: application/json; q=0.8; masked=true, application/xml; q=0.5; masked=false

Accept-Charset: utf-8

Accept-Encoding: gzip, deflate

RESTful API Web Design

Page 38 of 163

Accept-Language: de, en-GB; q=0.8, en-US; q=0.7

Authorization: Basic QURQVGFibGV0OnRoZXRhYmxldHBhc3N3b3Jk

Cookie: UserID=JohnSmith; Expires=Mon, 30 June 2015 24:00:00 GMT; Domain=abc.com

Host: api.abc.com

If-Match: “828051de9d395d8af7be2983g318471c”

If-Modified-Since: Tue, 15 Nov 2013 14:45:00 GMT

If-None-Match: “828051de9d395d8af7be2983g318471c”

If-Range: “828051de9d395d8af7be2983g318471c”

If-Unmodified-Since: Tue, 15 Nov 2013 14:45:00 GMT

Prefer: respond-async, wait=10

Range: bytes=250-499

User-Agent: Chrome/28.0.1500.72 m

 Response Headers
A response header allows the server to pass information about the response (that cannot be
communicated in the status-line), about the server, and about further access to the
resource (identified in the request URI) to the client.

Header Field
Name

Obligation4 Format & Description Condition

ETag Conditional
- in response

“ETag” “: ” entity-tag
Defines the entity tag for use
with the If-Match and If-None-
Match request headers.

Conditions
• Application (API)

requirements, used as a
concurrency control
mechanism for Update
requests.

• Caching requirements

Location Conditional
- in response

“Location” “: ” uri
Used to redirect the recipient to
a location other the request
URI for completion of the
request or identification of a
new resource.

Conditions
• 201 Created, 3xx Moved

Permanently response
status codes.

Set-Cookie Conditional
- in response

“Set-Cookie” “:” name “=”
value [; options]
Used to send name/value pairs
(i.e., cookies) for that URI from
the server to the user agent.

Conditions
• Applicable security

standard requirements.
• Application (API)

requirements, usually

RESTful API Web Design

Page 39 of 163

Header Field
Name

Obligation4 Format & Description Condition

used to identify a user’s
state.

Retry-After Conditional
- in response

“Retry-After” “:” datetime |
seconds
Contains either a date time or
an integer number of seconds
after which the client may try
the request again.

Conditions

• 503 Service Unavailable
response status code

WWW-
Authenticate

Conditional
- in response

“WWW-Authenticate” “:”
scheme “realm” “=” realm-
name
Specifies the authorization
scheme and realm required
from a client at the requested
URI.

Conditions
• Applicable security

standard requirements.
and

• 401 Unauthorized
response status code

R35 The ETag header MUST be used to specify the entity tag (entity-tag) of the response’s
entity.

Note: The entity comprises metadata in the form of entity headers and content in the
form of an entity-body [Fielding et al. (1999)].

R35.1 The entity-tag field value MUST adhere to format and value domain as specified by
IETF’s RFC 2616 for entity tag representation.

Note: See RFC 2616 [Fielding et al (1999)].

R35.2 The entity-tag field value generation MUST NOT be host-specific and ensure that the
same value is generated for the same representation.

R35.3 A response MAY include the ETag header.

R36 The Location header MUST be used to redirect the recipient to a location other than the
request URI for completion of the request or identification of a new resource.

“Location” “: ” uri

Table 3: Response Headers

RESTful API Web Design

Page 40 of 163

R36.1 The uri field value MUST adhere to the format and value domains as specified in
IETF’s RFC 7231 syntax for URI representation.

Note: See RFC 7231 [Fielding et al (2014)] and RFC 3986 [Berners-Lee (2005)].
RFC 7231 permits the use of relative URIs and fragment identifiers; its predecessor, RFC
2616, did not permit their use.

R36.2 A request or response MAY include the Location header.

Note: The Confirmation Management section provides the conditions for when a
Location header is to be returned.

R37 The Set-Cookie header MUST be used to send name/value pairs (i.e., cookies) to be
retained for the URI at the user agent.

“Set-Cookie” “:” name “=” value [; options]

R37.1 The name=value of the field value MUST adhere to the format and value domains as
specified in IETF’s RFC 6265.

Note: See IETF RFC 6265 [Barth (2011)].

R37.2 The options parameter of the field value MUST be limited to one or more of the
following:
“Expires” “=”datetime
“Max-Age” “=”seconds
“Domain” “=”domain-name
“Path” “=”path-value
“Secure”
“HttpOnly”

R37.2.1 The Expires=datetime option MUST be used to indicate the maximum lifetime of
the cookie, represented as the date and time at which the cookie expires.

R37.2.2 The Max-Age=seconds option MUST be used to indicate the maximum lifetime of
the cookie, represented as the number of seconds until the cookie expires.

R37.2.3 The Domain=domain-name option MUST be used to specify those hosts to
which the cookie will be sent.

R37.2.3.1 The domain-name value SHOULD adhere to the format and value domains as
specified in IETF’s RFC 6265 syntax for domain name representation.

Note: See IETF RFC 6265 [Barth (2011)].

RESTful API Web Design

Page 41 of 163

R37.2.4 The Path=path-value option MUST be used to identify a set of paths that
specifies the scope of the cookie.

R37.2.4.1 The path-value value SHOULD adhere to the format and value domains as
specified in IETF’s RFC 6265 syntax for path value representation.

Note: See IETF RFC 6265 [Barth (2011)].

R37.2.5 The Secure attribute option MUST be used to limit the scope of the cookie to
secure channels.

R37.2.6 The HttpOnly attribute option MUST be used to limit the scope of the cookie to
HTTP requests.

R37.3 A response MAY include the Set-Cookie header.

R38 The Retry-After header MUST be used to indicate either a date time or an integer
number of seconds after which the client may try the request again.

“Retry-After” “:” datetime | seconds

R38.1 The datetime field value MUST adhere to the format and value domains as specified
in IETF’s RFC 1123 (an update to RFC 822).

R38.2 The seconds field value SHOULD adhere to format and value domain as specified
IETF’s RFC 2616 for Delta Seconds.

Note: See RFC 2616 [Fielding et al (1999)].

R38.3 A response MAY include the Retry-After header.

Note: The Confirmation Management section provides the conditions for when a
Retry-After header is to be returned.

R39 The WWW-Authenticate header MUST be used to specify the authorization scheme
and realm required from a client at the requested URI.

“WWW-Authenticate” “:” scheme “realm” “=” realm-name

R39.1 The scheme realm= realm-name field value MUST adhere to the format and value
domains of the applicable security standard.

R39.2 A response MAY include the WWW-Authenticate header.

Examples of the response headers are shown below:

Etag: 737060cd8c284d8af7ad3082f209582d

RESTful API Web Design

Page 42 of 163

Location: http://api.abc.com/hr/v1/associates/12121212

Set-Cookie: UserID=JohnSmith; Expires=Mon, 30 June 2015 24:00:00 GMT; Domain=abc.com; Secure; HttpOnly

Retry-After: 120

WWW-Authenticate: Basic realm=”Admin”

 Entity Headers
An entity-header provides information on the entity-body or, if no entity-body is present,
about the resource identified in the request.

Header
Field Name

Obligation4 Format & Description Condition/
Usage

Allow Conditional
- in response

“Allow” “: ” methods
Contains a list of methods that are
allowed at a request URI.

Conditions
• Request method was

OPTIONS or
• 405 response status

code

Content
Disposition

Conditional
- in request
- in response

“Content-Disposition” “: ” type [“;”
disposition-parameter]

Specifies the presentational
disposition of a message instance or
message body part (i.e., inline,
attachment) and may be used to
indicate a default archival disposition
(i.e., a filename).

Condition
• Optional for a

message instance or
body-part of Content-
Type: multipart/mixed
OR multipart/related

• Required for a body-
part of Content-Type:
multipart/form-data

Content-
Encoding

Optional
- in request
- in response

“Content-Encoding” “:”
encoding_schemes
Specifies the encoding scheme(s)
used for the entity-body.

Usage
• The entity-body may

require encoding to
ensure safe and
proper transfer.

Content-
Language

Conditional
- in request
- in response

“Content-Language” “: ” languages
Specifies the languages for which the
entity-body is intended.

Conditions
• An entity-body exists

Content-
Length

Optional
- in request
- in response

“Content-Length” “: ” n
Specifies the length of the data (in
bytes) of the entity-body in a message
instance.

RESTful API Web Design

Page 43 of 163

Header
Field Name

Obligation4 Format & Description Condition/
Usage

Content-
Range

Conditional
- in request
- in response

“Content-Range” “: ”
“bytes” n “-“ m “/” length
Specifies where the partial resource
representation should be inserted
followed by the total size of the full
resource representation body.

Conditions
• A partial resource

representation is
being sent.

Content-
Type

Conditional
- in request
- in response

“Content-Type” “: ” type
“/” subtype [";" "masked" "="
"true" | "false"] [";" "boundary"
"=" boundary]
Describes the media type and
subtype of an entity-body.

Conditions
• An entity-body exists

Expires Mandatory
- in response

“Expires” “: ” datetime
Specifies the date and time the
representational state of the resource
is considered stale.

Last-
Modified

Mandatory
- in response

“Last Modified” “: ” datetime
Specifies the date and time the
representational state of the resource
was last modified.

Link Conditional
- in request

link = “<”uri “>” “;” “rel”
“=” relation-type [“anchor”
“=” uri] [“; ” target-attributes]
Expresses a typed relationship with
another resource.
Note: The value of relation-type is a
quoted string.

Conditions

• Application (API)
requirements

• Link to Confirm
Message entity is
provided, as
described in the
section, Confirmation
Management

• Link to Status
Monitor, as described
in the section,
Asynchronous
Communication

R40 The Allow header MUST be used to contain a list of methods that are allowed at a
request URI.

“Allow” “: ” methods

Table 4: Entity Headers

RESTful API Web Design

Page 44 of 163

R40.1 The methods field value MUST adhere to the value domain as specified in IETF’s
RFC 2616 for method representation.

R40.2 A response MAY include the Content-Language header.

Note: The Resource and Confirmation Management sections provide the conditions
for when an Allow header is to be returned.

R246 The Content-Disposition entity header MUST be used to tag a message instance or
message body-part with the intended presentational semantics (e.g. display inline,
display of an attachment).

“Content-Disposition” “: ” type [“;” disposition-parameter]

R246.1 The Content-Disposition entity header MAY be included as a message header or
message body-part header.

R246.2 The type field value MUST adhere to the format and value domain as specified in
IETF's RFC 2183.

Note: See RFC 1806 [Troost et al. (1995)] and RFC 2183 [Troost et al. (1997)]

R246.3 The disposition-parameter field value MUST adhere to the format and value domain as
specified in IETF's RFC 2183.

Note: See RFC 1806 [Troost et al. (1995)] and RFC 2183 [Troost et al. (1997)]

R41 The Content-Encoding header MUST be used to specify the encoding scheme applied
to the entity-body.

“Content-Encoding” “:” encoding_schemes

R41.1 The encoding_schemes field value MUST be limited to an element of the value
domain as specified by IANA as the set of registered HTTP Content-Coding Values.

Note: See the IANA Registry of HTTP Content-Coding Values [IANA(2013c)].

R41.2 A request or response MAY include the Content-Encoding header.

R42 The Content-Language header MUST be used to specify the language for which the
entity-body is intended.

“Content-Language” “: ” languages

RESTful API Web Design

Page 45 of 163

R42.1 The languages field value MUST adhere to the format and value domains as
specified in IETF’s RFC 5646.

Note: See RFC 5646 for the language tags [Phillips, A., Davis, M. (2009)].

R42.2 A request or response MAY include the Content-Language header.

The Content-Length header, used to specify the length of the data communicated in the
entity-body of a message instance, allows the message receiver to determine whether it has
read the correct number of bytes from the connection. In addition, a client may send a
HEAD request to determine the size of the entity-body before requesting it. [Masse (2011)]

R43 The Content-Length header MUST be used to specify the length (i.e. size) of the data
communicated in the entity-body in a message instance.

“Content-Length” “: ” n

R43.1 The n field value MUST adhere to the format and value domains as specified in
IETF’s RFC 2616 syntax for content length representation.

Note: See RFC 2616 [Fielding et al (1999)].

R43.2 A request or response MAY include the Content-Length header.

R44 The Content-Range header MUST be used to specify the bytes where the partial
resource representation is to be inserted in the full resource representation and the total
byte size of the full resource representation.

“Content-Range” “: ”
“bytes” n “-“ m “/” length

R44.1 The bytes n-m/length field value MUST adhere to the format and value domains as
specified in IETF’s RFC 2616 syntax for content range representation.

Note: See RFC 2616 [Fielding et al (1999)].

R44.2 A request or response MAY include the Content-Range header.

RESTful API Web Design

Page 46 of 163

R45 The Content-Type header MUST be used to describe the media type, subtype, masking5
and body-part boundary of an entity body within a request or response message-body.

“Content-Type” “: ” type “/” subtype [";" "masked" "=" "true" | "false"] [";" "boundary"
"=" boundary]

Note: In the case of a HEAD request, the Content-Type header is used to describe the
media type that would have been sent in response to a GET request.

R45.1 The type/subtype field value MUST adhere to the format and value domains
governed by IANA as the set of registered media types or the case of HTML forms,
the format and value domain governed by W3C as the set of form content types.

Note: See the IANA Registry of MIME Media Types [IANA], [Raggett (1999)].

R45.2 The type/subtype field value of the response MUST match a media type specified in
the Accept header of the request.

R45.3 A request or response MAY include the Content-Type header.

R45.4 Using the masked parameter, each type/subtype value MAY be associated with a
masked value.

R45.4.1 The masked value MUST be limited to an element of the value domain:
"true"
"false"

R45.4.1.1 The "true" value MUST be used to indicate that sensitive data is masked.

R45.4.1.2 The "false" value MUST be used to indicate that sensitive data is unmasked.

R45.5 Using the boundary parameter, body-part boundary delimiter MAY be specified.

5 According to the HTTP 1.1 Specification., 3.7 Media Types, parameters may follow the type/subtype in the form of
attribute/value pairs. This approach of managing the masking at the media type-level (vs. managing it separately
from the media type, i.e., at the message level) has a couple of advantages. In the case of multipart Content-Type
(where a single message’s entity-body may contain different media types), masking may be separately specified at
the “part” level. In the case of multiple acceptable media types in a single request, masking may be separately
specified for each media type. [Fielding et al. (1999)]

RESTful API Web Design

Page 47 of 163

R45.5.1 The boundary parameter value MUST adhere to the format and value domains as
specified in IETF’s RFC 2046.

Note: See IETF RFC 2046 [Freed (1996)]

R46 The Expires header MUST be used to indicate the date and time when the resource
representation is considered stale.

R46.1 The datetime field value MUST adhere to the format and value domains as specified
in IETF’s RFC 1123 (an update to RFC 822).

R6.2 A response MAY include the Expires header.

Note: The Expires header is required for HTTP 1.0 caches [Masse (2011)].

R47 The Last-Modified header MUST be used to indicate the date and time when the
resource representation was last modified.

R47.1 The datetime field value MUST adhere to the format and value domains as specified
in IETF’s RFC 1123 (an update to RFC 822).

R47.2 A response SHOULD include the Last-Modified header.

R48 The Link header MUST be used to express a typed relationship with another
resource.

“Link” “:” link
link = “<”uri “>” “;” “rel” “=”relation-type” [“anchor” “=” uri] [“; ” target-attributes]

R48.1 The link field value MUST adhere to the format and value domains as specified in
IETF’s RFC 5988 syntax for link representation.

Note: See IETF RFC 5988 [Nottingham (2010)].

R48.2 The relation-type of the link field value MUST be limited to the elements of the value
domain governed by IANA as the set of registered link relations and OAGi for specific
extensions.

The OAG value domain extensions include:
/oagi/confirm-message
/oagi/callback
/oagi/processing-status
/oagi/request-result

R48.2.1 The /oagi/confirm-message value MUST be used to inform a client that the URI of
the link field value identifies a Confirm Message location.

RESTful API Web Design

Page 48 of 163

R48.2.2 The /oagi/callback value MUST be used to inform a client that the URI of the link
field value identifies a callback location.

R48.2.3 The /oagi/processing-status value MUST be used to inform a client that the URI
of the link field value identifies a processing-status location.

R48.2.4 The /oagi/request-result value MUST be used to inform a client that the URI of
the link field value identifies a request-result location.

R48.3 A response MAY include the Link header.

Examples of the entity headers are shown below:

Allow: GET, HEAD

Content-Disposition: attachment; filename=”att-1111-1.png”

Content-Encoding: gzip

Content-Language: en-GB

Content-Length: 250

Content-Range: bytes 2145-7431/14323

Content-Type: application/json

Content-Type: application/json; masked=true

Content-Type: application/json; masked=false

ETag: “737060cd8c284d8af7ad3082f209582d”

Expires: Thu, 31 Dec 2013 17:00:00 GMT

Last-Modified: Tue, 15 Nov 2013 14:45:00 GMT

Link: <http://api.abc.com/hr/v1/Confirm Messages/abc102030xyz>; rel=”/oagi/confirm-message”; method=”GET”
Link: <http://api.abc.com/pr/v1/associates/12121212/timeCards >; rel=”/oagi/callback”; method=”POST”

 Custom Headers

Custom headers shouldn't be used to change the behavior of the HTTP
methods. Custom headers should be used for informational purposes only; clients and
servers should not fail when they do not find expected custom headers. Information
that is conveyed through a custom header should not be needed for the correct
interpretation of a request or response. [Masse (2011)] This objective or constraint
serves to promote broader interoperability.

RESTful API Web Design

Page 49 of 163

Header Field
Name

Obligation4 Format & Description Condition

OAGi-Allow-
CustomOperator

Conditional
- in response

“OAGi-Allow-
CustomOperator” “: ” custom-
operators
Contains a list of custom
operators that are allowed in a
request at a specified URI.

Conditions
• Request method was

OPTIONS and custom
operator exists or

400 response status code
on request for controller
resource invocation.

OAGi-Context-
ExpressionID

Optional
- in request

“OAGi-Context-ExpressionID”
“: ” identifier
Contains the identifier of the
context expression for the
request.

Conditions
• Application (API)

requirements

• Routing requirements
• Logging requirements

OAGi-
CorrelationID

Conditional
- in request
- in response

“OAGi-CorrelationID” “: ”
identifier
Contains the identifier of the
related or originating request.

Conditions

• Application (API)
requirements

• Logging requirements

OAGi-
ConversationID

Optional
- in request
- in response

“OAGi-ConversationID” “: ”
identifier
Contains the identifier of the
conversation in which the
request or response participates.
A conversation is the
coordinated exchange of
multiple messages between two
or more partners. The scope of
the identifier spans an entire
conversation.

OAGi-
IntermediaryID

Optional
- in request

“OAGi-IntermediaryID” “: ”
identifier
Contains the identifier of the
system that acts as an
intermediary between the
sending and receiving systems.

OAGi-MessageID

Optional
- in request
- in response

“OAGi-MessageID” “: ”
identifier
Contains the identifier of the
message instance (i.e. the
request or response).

Conditions

• Application (API)
requirements

• Logging requirements

RESTful API Web Design

Page 50 of 163

Header Field
Name

Obligation4 Format & Description Condition

OAGi-OriginatorID Optional
- in request

“OAGi-OriginatorID” “: ”
identifier
Contains the identifier of the
system that initiated (i.e.
originated) the need for the
request to be created.

OAGi-ReferenceID Optional
- in request

“OAGi-ReferenceID” “: ”
identifier
Contains the identifier of the
business task instance that
initiated the need for the request
to be created.

OAGi-ScenarioID Optional
- in request

“OAGi-ScenarioID” “: ”
identifier
Contains the identifier of the
business scenario in which the
request is participating.

OAGi-SenderID Optional
- in request
- in response

“OAGi-SenderID” “: ”
identifier
Contains the identifier of the
system that sent a request.

OAGi-TaskID Optional
- in request

“OAGi-TaskID” “: ” identifier
Contains the identifier for the
business task (command or
event) that initiated the need for
the request to be created.

OAGi-UserID Optional
- in request

“OAGi-UserID” “: ” identifier
Contains the identifier of the
user that initiated the request.

OAGi Custom
Header Extension
Pattern

Conditional
- in request
- in response

“OAGiX-” custom-field-name
“:” field-value
Used for custom header
extensions (e.g. application
specific) that not already
defined.

Conditions
• Application (API)

requirements

R49 A custom header MUST be defined using the following convention:
Namespace“-“HeaderName, where Namespace identifies a scope and HeaderName
represents the name associated with the Header.

Table 5: Custom Headers

RESTful API Web Design

Page 51 of 163

R52 The OAGi-Allow-CustomOperator header MUST be used to contain a list of custom
operators that are allowed in a request at a specified URI.

“OAGi-Allow-CustomOperator” “: ” custom-operators

R52.1 The custom-operators field value MUST be limited to the elements of the the value
domain of custom operators as defined by an API Specification and allowable for a
resource at a specified URI.

R52.1.1 The custom operators MUST adhere to the rules for URI path and resource model
representation.

R52.2 A response MAY include the OAGi-Allow-CustomOperator header.

R55 The OAGi-Context-ExpressionID header MUST be used to contain the identifier of the
context expression for the request.

“OAGi-Context-ExpressionID” “: ” identifier

Note: A context is indicated by a context expression that specifies a set of context nodes
(of a graph) that can be resolved to context values that together represent a specific
context. A content node is associated with a context category (e.g. business process,
geopolitical).

R55.1 A request MAY include the OAGi-Context-ExpressionID header.

R56 The OAGi-CorrelationID header MUST be used to contain the identifier of the related
request.

“OAGi-CorrelationID” “: ” identifier

R56.1 The identifier field value MUST be the identifier (i.e. OAGi-MessageID header field
value) of the request related to the response.

R56.2 A request or response MAY include the OAGi-CorrelationID header.

Note: A callback request, as used in the asynchronous service provider push pattern,
is an example of where the request may include this header.

R261 The OAGi-ConversationID header MUST be used to contain the identifier of the
conversation in which the request or response participates.

“OAGi-ConversationID” “: ” identifier

Note: A conversation is the coordinated exchange of multiple messages between two or
more partners. The scope of the identifier spans an entire conversation.

RESTful API Web Design

Page 52 of 163

R261.1 The identifier field value MUST be globally unique.

R261.2 A request or response MAY include the OAGi-ConversationID
headerR290 The OAGi-IntermediaryID header MUST be used to contains the identifier
of the system that acts as an intermediary between the sending and receiving systems.

“OAGi-IntermediaryID” “: ” identifier

R290.1 The identifier field value MUST be limited to an element of a defined identifier value
domain.

R290.2 A request MAY include the OAGi-IntermediaryID header.

R57 The OAGi-MessageID header MUST be used to contain the identifier of the message
instance (i.e. the request or response).

“OAGi-MessageID” “: ” identifier

R57.1 The identifier field value MUST be globally unique.

R57.2 A request or response MAY include the OAGi-MessageID header.

R284 The OAGi-OriginatorID header MUST be used to contain the identifier of the system
that initiated (i.e. originated) the need for the request to be created.

“OAGi-OriginatorID” “: ” identifier

Note: An event message, that communicates the event occurrence as a result of a
command request, may include this header to communicate the initiator or originator.
This header is not intended to be used as a correlation identifier for messages across
systems participating in a collaboration.

R284.1 The identifier field value MUST be limited to an element of a defined identifier value
domain.

R284.2 A request MAY include the OAGi-OriginatorID header.

R288 The OAGi-ReferenceID header MUST be used to contain the identifier of the business
task instance that initiated the need for the request to be created.

“OAGi-ReferenceID” “: ” identifier

R288.1 The identifier field value MUST be globally unique.

R288.2 A request MAY include the OAGi-ReferenceID header.

RESTful API Web Design

Page 53 of 163

R289 The OAGi-ScenarioID header MUST be used to contain the identifier of the business
scenario in which the request is participating.

“OAGi-ScenarioID” “: ” identifier

R289.1 The identifier field value MUST be limited to an element of a defined identifier value
domain.

R289.2 A request MAY include the OAGi-ScenarioID header.

R290 The OAGi-SenderID header MUST be used to contain the identifier of the system that
sent a request.

“OAGi-SenderID” “: ” identifier

R290.1 The identifier field value MUST be limited to an element of a defined identifier value
domain.

R290.2 A request MAY include the OAGi-SenderID header.

R291 The OAGi-TaskID header MUST be used to contain the identifier of the business task
(command or event) that initiated the need for the message to be created

“OAGi-TaskID” “: ” identifier

R289.1 The identifier field value MUST be limited to an element of a defined identifier value
domain.

R289.2 A request MAY include the OAGi-TaskID header.

R58 The OAGi-UserID header MUST be used to contain the identifier of the user that
initiated the request.

“OAGi-UserID” “: ” identifier

Note: This header is not intended for authentication purposes; it may be used when the
server needs knowledge of the user who made the request.

R58.1 A request MAY include the OAGi-UserID header.

Examples of custom headers are shown below:

OAGi-CorrelationID: 1070fdc4-0222-410d-9398-c51e9176299d

OAGi-MessageID: 1070fdc4-0222-410d-9398-c51e9176299d

OAGi-UserID: jsmith@gmail.com

mailto:jsmith@gmail.com

RESTful API Web Design

Page 54 of 163

An extension pattern is provided for custom headers that are not already defined in this
specification. The extensions should be limited to application-specific requirements.

R63 Application-specific headers MAY be defined using the custom header extension pattern.

R63.1 A custom header extension MUST be named according to the following
representation pattern:

“OAGX-” custom-field-name “: ” field-value

R63.2 A custom header extension MUST be registered with OAGi.

Note: Registration requires submission, definition and approval of the custom header.
Central registration facilitates coherency and reuse across OAGi custom header
extensions.

RESTful API Web Design

Page 55 of 163

 Caching
A caching mechanism is a local data store that manages copies of resource representations.
Caching offers several benefits including: reduced client perceived latency, increased
reliability, and reduced load on the servers. Caching mechanisms may exist anywhere
along the request/reply chain (client network, content delivery network and server
network).

RFC 2616 [Fielding et al (1999)] states, “Caching would be useless if it did not significantly
improve performance. The goal of caching in HTTP/1.1 is to eliminate the need to send
requests in many cases, and to eliminate the need to send full responses in many other
cases. The former reduces the number of network round-trips required for many operations;
we use an "expiration" mechanism for this purpose. The latter reduces network bandwidth
requirements; we use a "validation" mechanism for this purpose.”

6.6.1 Expiration Mechanism

Servers assign expiration times to responses with the expectation that the entity will not
significantly change before the expiration time. The expiration mechanism applies only to
responses taken from a cache and not first-hand responses to the client request. The
expiration time is the primary mechanism for avoiding requests to the origin server allowing
a response from a cache to satisfy subsequent requests. A response in a cache that has
exceeded the expiration time is known as a "stale" entry; one that has not exceeded the
expiration time is known as "fresh" entry.

Servers specify expiration times using the Expires header or the “max-age” directive of
the Cache-Control header.

R64 A served representation that is to be cached SHOULD include:
a Cache-Control: max-age= seconds header,
a Date header
and an Expires header (for legacy HTTP 1.0 caches).

Note: Inclusion of the Date header helps clients compute the freshness of the
representation. [Masse (2011)]

The “must-revalidate” directive of the Cache-Control header may be used by an origin
server to force an HTTP/1.1 cache to revalidate a cache entry once it becomes stale.

R64.1 If the origin server requires revalidation of a cache entry on any subsequent use of a
response, then the server representation SHOULD include a Cache-Control: must-
revalidate header.

Note: A server may also assign an expiration time in the past to require validation of a
cache entry of any subsequent response; however, a cache may be configured to ignore
a server's designated expiration time.

R64.2 If the Cache-Control: must-revalidate is present in a response, then the cache MUST
NOT use the entry after it becomes stale to satisfy to a subsequent request without first
revalidating it with the origin server.

RESTful API Web Design

Page 56 of 163

R65 A served representation that is not to be cached SHOULD include:
a Cache-Control: no-cache, no-store header
a Pragma: no-cache header (required by legacy HTTP1.0 caches)
an Expires: 0 header (required by legacy HTTP1.0 caches) [Masse (2011)

6.6.2 Validation Mechanism

When a cache has a stale entry that may be used as a response to a client’s request, it
must first check with the origin server (or intermediate cache with a fresh response) to
determine if the cache entry is still usable. This process is known as “validating” the cache
entry.

HTTP/1.1 supports cache validators that are used by the caching mechanism to validate the
cache entry. The cache validator is attached to the origin server’s full response and stored
along with the cache entry. There are two cache-validators: the Last-Modified Date (the
value of the Last-Modified entity header) value) and the Entity Tag (the value of the ETag
response header).

When a client makes a request for a resource for which there exists a stale cache entry, the
cache requests the server to validate the entry by including the validators in associated
headers in the request for comparison with the current validators at the server.

HTTP/1.1 supports both positive and negative approaches to cache validation. In other
words, it is possible to request either that a method be performed if and only if a
validator matches or if and only if no validators match, respectively. For the positive
approach to cache validation, if the comparison results in a match for Last-Modified
Date and Entity Tag validators communicated in the If-Modified-Since and/or If-
None-Match (respectively), then the server returns a 304 Not
Modified response. For the negative approach to cache validation, if the comparison
results in no match for the Last Modified Date and Entity Tag validators communicated
in the If-Unmodified-Since, If-Match (respectively), then the server returns a 304
Not Modified response.

Note: Additional information on caching-related headers that may be set as a result of
message processing, are provided in the Confirmation Management section.

RESTful API Web Design

Page 57 of 163

The figure shown below diagrams the Positive Approach to Cache Validation.

Figure 3: Positive Approach to Cache Validation

RESTful API Web Design

Page 58 of 163

Notice that when the cache entry is not stale, the need to send the request to the server is
eliminated. When the cache entry is stale and the validators of the cache match those at
the server, the need to send a full response is eliminated. In both cases, overall
performance is improved.

7 Message Resource Identification
Each distinct web-based concept is known as a resource and may be addressed through a
unique identifier. RESTful Web Services use Uniform Resource Identifiers (URIs) used to
identify resources.

 Resource Types
Three types of resources discussed by [Masse (2011)] include:

Collection

Collection is a server-managed directory of resources. A client may request to add, update
or delete resources in a collection. The collection has ownership of the contained resources
and manages the resources’ URIs.

In each of the following examples the URI identifies a collection resource where service-
domains and services are collection resources.

http://api.abc.com/service-domains
http://api.abc.com/service-domains/hr/services

Instance

Refers to an individual resource of the collection and is often referred to as a document
instance, comprising properties and links to other resources.

In each of the following examples the URI identifies an instance resource where hr and
employeeManagement identify instance resources.

http://api.abc.com/service-domains/hr
http://api.abc.com/service-domains/hr/services/employeeManagement

Controller

Controller represents a procedural concept. Controller resources are used to invoke
application-specific functions that are not supported by one of the standard HTTP methods
(supporting create, read, update and delete operations).

The following example is a controller resource where convert identifies a currency
conversion function of the US Dollar (USD). The USD amount to be converted and the
target currency is communicated in the message-body of the request and the converted
amount is communicated in the message-body of the response.

http://api.abc.com/core/v1/currencies/USD/convert

Instance Resource Set

An instance resource set is a set of instance resources that is determined by a server (at a
point in time) to satisfy the set’s membership criteria (i.e., selection, filter, expansion and

RESTful API Web Design

Page 59 of 163

search criteria) of a resource management operation (e.g. GET request) upon a collection
resource. It may be considered to be a kind of Dynamic Virtual Collection.

 URI Design and Format
The generic URI syntax is described in IETF’s RFC 3986 [Berners-Lee (2005)] as:

 URI = scheme “://” authority “/” path [“?” query] [“#” fragment]

The syntax consists of a hierarchical sequence of components:

• A required scheme component that refers to a specification for assigning identifiers
within that scheme (e.g. http).

• An optional authority component that refers to a naming authority (e.g. api.abc.com)
• A required path component that identifies a resource within the scope of the URI’s

scheme and naming authority (if any); it is usually organized in a hierarchical form.
• An optional query component, containing non-hierarchical data, that along with data in

the path component identifies a resource within the scope of the URI’s scheme and
naming authority (if any).

• An optional fragment component allows indirect identification of a secondary resource by
reference to a primary resource and additional identifying information.

Since the URIs for our Web APIs are exposed for consumption both internally and
externally, it is essential that the vocabulary used in the URI correspond to the enterprise
shared (i.e., canonical) vocabulary.

R66 Vocabulary used in the URI components MUST belong to the enterprise shared (i.e.,
canonical) vocabulary.

R67 URIs represented in HTTP messages (e.g. headers, entity-body) MUST be absolute (i.e.
include the scheme and authority).

7.2.1 Service Owner

URI schemes may include a hierarchical element for a naming authority where the
governance of the name space defined by the remainder of the URI is delegated to that
authority.

7.2.1.1 Design

The generic authority syntax is further described by RFC 3986 [Berners-Lee (2005)] as:

authority = [userinfo "@"] host [":" port]

It provides a common means for distinguishing an authority based on a registered name or
server address, along with optional port and user information.

The host subcomponent of the authority is identified by either an IP literal (encapsulated in
brackets), an IP address (in dotted decimal form) or a registered name.

The representation of the host subcomponent in an API’s URI authority may differ to
support the specific requirements of that APIs operational use; therefore, it is not possible
(in this specification) to restrict the authority host subcomponent to be of one type of
representation (e.g. registered name). For example, an API that has generally available to
the partner community through a central, external gateway may use a registered name for
the host subcomponent, while an API that has limited availability to a particular set of
devices, such as time clocks, may use an IP address for the host subcomponent.

RESTful API Web Design

Page 60 of 163

R68 The host subcomponent of a URI Authority MAY be represented by one of the following:
- IP literal
- IP address
- registered name

A registered name is usually defined within a host or service name registry. The most
common registry mechanism is the Domain Name System (DNS). DNS registered names,
also known as domain names, consist of a sequence of domain labels separated by the
period, “.”. For a fully qualified domain name, the rightmost label is referred to as the top-
level domain. Labels to the left of the top-level domain are referred to as subdomains; the
rightmost subdomain is referred to as first-level subdomain.

The subdomains of a domain name, exposed in a URI Authority, should be consistently
named.

For any URI Authority host, represented as a domain name, the following rules
apply:

R69 The first-level subdomains SHOULD identify the service(s) owner.

R70 The second-level subdomain MAY identify the service owner.

R71 The subdomains identifying the service owners SHOULD be consistently named.

The following example shows the host subcomponent as a registered name (domain name)
where “abc” identifies the service owner.

http://abc.com

The following example shows the host subcomponent as a registered name (domain name)
where “product-xyz” and “abc” identifies the service owner.

http://product-xyz.abc.com

7.2.2 API and Developer Domains

API and developer domains are key concepts for exposing and managing Web APIs; these
concepts are represented in either the URI Authority or URI Path components of the URI.
Given the required variability of the authority host subcomponent (described above) it is not
possible to limit the representation of these concepts to one component of the URI. This
section describes how these concepts may be represented.

7.2.2.1 API Domain

The “api” concept serves the access point for all exposed APIs of a set of services.

R72 The term “api” MUST be used to represent the API concept in the URI as the access
point for all exposed APIs of a set of services.

R285 The term “api” MUST be represented in the subdomain or in the first URI path segment.

The following example shows the host subcomponent as a registered name (domain name)
where “abc” is the service(s) owner and the “api” concept is represented as a subdomain.

http://api.abc.com

RESTful API Web Design

Page 61 of 163

The following examples show the host subcomponent as a registered name and an IP
address, respectively, where the “api” concept is represented as a URI path segment.

http://product-xyz.abc.com/api

http://170.146.39.174/api

7.2.2.2 Developer Domain

The “developer” concept represents the developer public portal that helps clients with API-
related documentation, discussion forums, etc.

R73 The term “developer” MUST be used to represent the developer concept in the URI as
the access point for the developer portal of a set of services.

R286 The term “developer” MUST be represented either in the subdomain before the service
owner or in the first URI path segment.

The following example shows the host subcomponent as a registered name (domain name)
where “abc” is the service(s) owner and the “developer” concept is represented as a
subdomain.

http://developer.abc.com/

The following examples show the host subcomponent as a registered name and an IP
address, respectively, where the “developer” concept is represented as a URI path segment.

http://product-xyz.abc.com/developer

http://170.146.39.174/developer

7.2.3 URI Path

7.2.3.1 Service Domain

Service domains are used to organize, collect and manage service inventories; the set of
services may be independently owned and operated.

If the service owner, represented in the URI authority, is at a broad or high-level (e.g. at an
enterprise or business unit level), then representation of the service domain in the URI is
required to support managing the domain’s services’ APIs.

Depending upon whether or not the host subcomponent of the URI authority includes the
“api” concept, the service domain name may occur in either the first path segment or path
segment that is subsequent to the “api” concept.

R74 The service domain value of the Web API MUST be represented in the URI path
segment.

R74.1 If the “api” concept is represented in the URI authority, then the first path segment
MUST identify the service domain.

R74.2 If the “api” concept is represented as a path segment in the URI path, then the
subsequent path segment MUST identify the service domain.

RESTful API Web Design

Page 62 of 163

R75 The service domain value MUST be limited to the elements of the value domain
governed by the service owner (organization), as the set of registered service domain
values.

In the following example, hr represents the human resources service domain where the
“api” concept is represented in the URI authority.

http://api.abc.com/hr

In the following example, hr represents the human resources service domain where the
“api” concept is represented in the URI path.

http://product-xyz.abc.com/api/hr

7.2.3.2 API Version

The major version identifier of each web API must precede the resources managed through
the API. The path segment in the URI must be used to represent the service version.

R76 The major version identifier of the Web API MUST be represented in the URI path
segment.

R76.1 If the “api” concept is represented in the URI authority and the first path segment
identifies the service domain, then the second path segment MUST identify the major
version identifier of the service.

R76.2 If the “api” concept is represented as a path segment in the URI path, and the next
path segment identifies the service domain, then the subsequent path segment
MUST identify the major version identifier of the service.

In the following example, v1 represents version 1 of the associates Web API where the “api”
concept is represented in the URI authority.

http://api.abc.com/hr/v1/associates

In the following example, v1 represents version 1 of the associates Web API where the “api”
concept is represented in the URI path.

http://product-xyz.abc.com/api/hr/v1/associates

7.2.3.3 Resource Model

The URI path (following the version identification) represents the RESTful Web API’s
resource model. Each forward slash path segment identifies a unique resource in the
model.

R77 For the URI resource model, each path segment MUST identify a unique resource.

The following example identifies a collection resource.

http://api.abc.com/hr/v1/associates

The following example identifies an instance resource.

http://api.abc.com/hr/v1/associates/12121212

RESTful API Web Design

Page 63 of 163

The following rules provide for consistent resource naming according to the different
resource types, discussed above.

R78 A named instance resource SHOULD be named by a singular noun or noun phrase path
segment.

The following example shows a named resource instance of mary-jones.

http://api.abc.com/hr/v1/associates/12121212/contacts/mary-jones

R79 A collection resource SHOULD be named by a plural noun or noun phrase path
segment.

The following example shows a collection resource named associates.

http://api.abc.com/hr/v1/associates

R80 A controller resource SHOULD be named with a verb or verb phrase so as to
communicate its operator.

R81 A controller resource name SHOULD occur as the last segment in a URI path.

The following example shows a controller resource, hire.

http://api.abc.com/hr/v1/associates/12121212/hire

As mentioned above, each path segment of the URI identifies a unique resource in the
resource model of the RESTful Web API. The goal of resource modeling is to establish the
API’s key concepts. Some guidelines follow:

• URI path segments should not be forced to have the same hierarchy as the payload
(body) of a message or underlying object class model. Treat the URI as the identifier
only, not as a predictor of the message body layout itself. It is fine (and common) that
the message body hierarchy varies over time, even for the same (non-varying) URI.
• As such there is no standard pattern for representing object class model

relationships (e.g. associations, aggregations, compositions) in a resource model.
• The principle of addressability requires that every resource have its own URI [Richardson

(2013)]

A resource model should not include concepts that do not serve to identify the resource.
For example, concepts that might be needed to route requests to a specific application or
application instance should not exist as part of the resource model.

R82 Concepts used solely for routing a request SHOULD NOT exist in the URI resource
model.

7.2.3.4 Format

The URI path may comprise one or more path segments. A path segment represents

R83 For the URI path, the forward slash character, “/”, MUST be used to indicate a
hierarchical relationship.

The following example illustrates use of the forward slash.

RESTful API Web Design

Page 64 of 163

http://api.abc.com/hr/v1/associates

To avoid possible confusion between the lack of a trailing slash character and the existence
of a trailing slash character, a URI must not include a trailing slash.

R84 For the URI path, a trailing forward slash character, “/”, MUST not be used.

The following example illustrates improper use of the forward slash.

http://api.abc.com/hr/v1/associates/ is not allowed.

In order to ease the readability of URI paths the hyphen character “-“ should be used in
multi-part (e.g. multi-word) segments.

R85 For URI path segments, consisting of more than a single word, a hyphen character “-“
SHOULD be used to separate the words.

R85.1 The use of the hyphen character “-“ in a URI path segment MUST be limited to the
separation of words.

The following example illustrates use of the hyphen in a named instance resource.

http://api.abc.com/hr/v1/associates/12121212/contacts/emergency-contact

In order to avoid confusion (e.g. due to the possibility of being obscured), the underscore
character “_” should not be used in URIs.

R86 For the URI path, the underscore character “_”SHOULD not be used in URIs.

The scheme and host components of the URI are case-insensitive. The other components
are case-sensitive; therefore, in order to avoid confusion, lower case letters should be used.
[Berners-Lee (2005)]

R87 For the URI path, lower case letters SHOULD be used.

The following example illustrates improper and proper use of upper and lower case letters,
respectively.

http://api.abc.com/hr/v1/Associates/12121212/Addresses is not preferred.

http://api.abc.com/hr/v1/associates/12121212/addresses is preferred.

Format preferences (e.g. abc12345.json) should not be communicated in the URI. Instead
HTTP’s provided format selection mechanism, the Accept request header, must be used.

R88 File extensions SHOULD NOT be used in the URI to indicate format preference.

7.2.4 URI Query

The URI query is an optional component of the URI. If provided, it contributes to the unique
identification of a resource. The query component comprises a set of parameters that
qualifies the resource identified by the path component.

RESTful API Web Design

Page 65 of 163

7.2.4.1 Design

The query component supports additional interaction capabilities such as selection (or
partial response) and filtering. The detailed description of these capabilities, their usage
and rules are available in dedicated sections, below.

R89 The URI query component MUST be used to express query criteria on collection
resources.

Note: The section, Message Resource Management, defines each type of query
criterion.

7.2.4.2 Format

R90 The URI query component MUST be indicated by the first question-mark, “?”.

R91 The parameter names occurring in a list in the URI query component MUST be delimited
by the comma, “,”.

R92 The conjunction of parameter-value pairs MUST be represented by the ampersand, “&”.

Note: The section, Message Resource Management further specifies the format for each
type of query criterion supported.

 URI Encoding
IETF’s RFC 3986 [Berners-Lee (2005)] restricts URI characters to the ASCII character-set.
The RFC identifies a set of reserved characters (e.g. “:”, “/”) used to delimit components
(and subcomponents) within a URI. Use of either reserved characters outside of their
intended purpose or unreserved characters outside of the ASCII character-set must be
encoded.

URI encoding or percent-encoding is a mechanism used to represent a data octet in a URI
component when that octet’s character is outside the allowed set (i.e. unreserved
characters of the ASCII character-set).

For any request, the following rule applies:

R93 The URI MUST be percent-encoded.

Note: This specification does not encode the URIs provided as examples.

93.1 Reserved characters (of the ASCII character-set) that have a special meaning in a
certain context MUST be percent-encoded.

Note: See IETF’s 3986 [Berners-Lee (2005)] for the list of reserved characters.

R93.2 Unreserved characters (of the ASCII character-set) MUST NOT be percent-encoded.

Note: See IETF’s 3986 [Berners-Lee (2005)] for the list of unreserved characters.

R93.3 Characters that are not part of the ASCII character-set MUST be percent-encoded.

RESTful API Web Design

Page 66 of 163

 URI Template Design and Format
A URI Template is a compact sequence of characters for describing a range of Uniform
Resource Identifiers through variable expansion. The specification for URI Template syntax,
process for expanding a URI Template into a URI reference and Internet usage guides are
defined by Gregorio et al. (2012).

Note: The goal of this section is to introduce the URI Template specification by Gregorio et
al. (2012); it is limited to an overview of some of the fundamental goals and concepts of the
specification. API designers are referred to the URI Template specification for a
comprehensive treatment of URI Template design and format. API designers must adhere
to this specification in the design of URI Templates.

URI Templates provide a means of representing abstract resource identifiers so that variable
parts can be easily identified and described. URI Templates have many uses including:
service discovery, configuring resource mappings, defining computing links, specifying
interfaces, etc. This specification is specifically interested in their use for the specification of
interfaces.

A URI Template may have both literals and expressions. The literals are fixed values that
have been determined by the API designer. The variable expressions must receive value
substitutions in order to resolve to a resource.

• Expression – the text between “{“ and “}”, including the enclosing braces. Each
expression contains an optional operator that identifies the expression type and its
expansion process, followed by a comma-separated list of variable names and optional
value modifiers.

• Expansion – the string result obtained from a template expression after processing it
according to its expression types, list of variables, and value modifiers (e.g. a prefix,
such as max length, that limits a variable’s value string).

R94 A URI Template MAY contain zero or more expressions.

R95 A URI Template’s expression MUST be delimited by a matching pair of braces, “{“and “}”.

R95.1 Expressions MUST NOT be nested.

Several expression types exist (e.g. simple string expansion; fragment expansion; string
expansion with multiple variables; form-style query expansion). The default expression
type is the simple string expansion where a single named variable is replaced by its value as
a string (after percent-encoding any characters not in the set of unreserved URI
characters). The expression type is determined by the first character of the opening
brace, for example, a fragment expansion is indicated by the crosshatch, “#”, operator and
a form-style query expansion is indicated by the question-mark “?” operator.

The following example illustrates a URI Template with a single expression of type simple
string expansion. The URI Template contains one expression: {associateID}.

http://api.abc.com/hr/v1/associates/{associateID}

The complete set of expression types (and corresponding operators) with examples are
provided by Gregorio et al. (2012) in the URI Template specification.

RESTful API Web Design

Page 67 of 163

8 Message Resource Management
The definition of a resource management operation6 includes the client’s request message
and the server’s response message(s), as shown in Figure 4. A resource management
operation is further classified according to how the resource is managed: CRUD (Create,
Read, Update and Delete) Operation, Custom (non-CRUD) Operation.

The request message is used to invoke the operation and communicate how a resource is to
be managed, i.e., it conveys the detailed data management instruction for a given resource.
This section focuses on the specification for defining request messages7. Their specification
is limited to considering only those HTTP components that are relevant to managing the
resource8; those components include:

• Mandatory identification of the resource being managed. (i.e., a URI in the request start-
line)

• Mandatory identification of the operator related to the identified resource. (i.e. an HTTP
method in the request start-line or custom operator in URI)

• Conditional message headers (i.e. request message-headers such as Accept, If-Modified-
Since)

• Conditional, resource representation. (i.e. request message-body)

Note: All the headers, their purpose and their usage are found above, in the message
headers section. Any mention of headers in this section is related to resource management
and not intended to be complete and comprehensive.

The remaining subsections provide the specification for request messages supporting:

• CRUD Operations
• Custom Operations (i.e. non-CRUD operations)
• Bulk Operations
• Operations with Large URIs and Query Components with Sensitive Data

6 A resource management operation is an abstract concept, generalizing the different types
of operations.
7 The specification for defining response messages are only provided for Read Operations,
necessary to support pagination scenarios with successive request-reply exchanges.
8 Other HTTP components, such as those needed to address other client-server interaction
requirements (e.g. Cache –Control, Transfer-Encoding, and Authorization headers), are
addressed separately, in their respective section.

RESTful API Web Design

Page 68 of 163

 Query Criteria in the Query Component
Multiple types of query criteria (e.g. selection, filtering) are available to the query
component of the URI as part of an HTTP request message. Any such criterion,
communicated in a request, is considered part of the request message.

This specification uses a subset of the OData Version 4.0 URL Conventions [OASIS (2014b)]
syntax for the representation of different types of query criteria in the URI query
component9:

• selection criterion
• expansion criterion
• filter criterion
• start sequence criterion
• maximum number criterion
• count criterion
• ordering criterion
• search criterion
• pagination criterion

OData refers to these query criteria as system query options.

The filter criterion may be used in a request message to limit the instance resources being
managed to a subset of a collection. The remaining types of criteria are applicable to read

9 The rationale for using the OData syntax for the query criterion includes: clear
delineation of query criterion boundary and purpose, prevention of name clashes in the
URI query that, otherwise, is more prevalent in the generic name-value pair pattern,
support of relational and logical operators, and broad capability of the query language
provide a backwards compatible path forward for incremental adoption, as needed.

Figure 4: Resource Management Operation

RESTful API Web Design

Page 69 of 163

operations only. This section provides the rules that are common across the query criterion
types as well as the rules that are specific to the filter criterion.

R96 Filter criterion MAY be used in the request message of a Read, Update, Delete or
Custom operation.

R97 Selection, expansion, start sequence, maximum number, count, ordering, search and
pagination criteria MAY be used in the request message of a Read operation.

R98 Selection, expansion, start sequence, maximum number, count, ordering, search and
pagination criteria MUST NOT be used in the request message of a non-Read operation
(i.e., Create, Update, Delete or Custom operation).

All OData-defined query criterion parameters are prefixed with the dollar sign “$” character.
Any custom query criterion, not defined in the OData specification, must not begin with the
“$” character.

For any query criterion in a message upon a collection or instance resource, the
following rules apply:

R99 The URI query component MUST be used to specify the query criteria of the resource
representation to be returned in the response.

R100 Query criterion MUST adhere to the OData specification [OASIS (2014b)]).

R100.1 OData query criterion parameters MUST be prefixed with the dollar sign, “$”.

R100.2 Custom query criterion parameters (that are not defined in the OData specification)
MUST NOT be prefixed with the dollar sign, “$”.

Note: The URI Query format rules require that the conjunction of name-value pairs be
represented by the ampersand, “&”. The query criterion are treated as name-value pairs;
therefore, their conjunction is also represented by the ampersand,”&”.

In order to specify a nested property of a resource (e.g., a property of a complex property
of a resource) as part of a query criterion, the nested property must be qualified by the
resource property path to the nested property.

For any query criteria in a message upon a collection or instance resource, the
following rule applies:

R101 A nested property of a resource MUST be qualified by its property path where each
segment of the path specifies a property.

R101.1 Property path segments MUST be delimited using the forward slash, “/”, as a delimiter
between the containing properties and the nested property.

The following example illustrates a nested property of a person’s given name. In this
example, personName is a containing property and givenName is the nested property.

person/personName/givenName

RESTful API Web Design

Page 70 of 163

8.1.1.1 Specifying Filter Criterion

A client may specify filter criteria in the request message of a resource management
operation upon a collection resource in order to constrain the results to a set of instance
resources, satisfying the filter criteria. The server uses the filter criteria as search
parameters to identify the instance resources in a collection resource. This section
describes how filter criteria are to be represented in a RESTful Web API’s request messages.

Note: While the predominant use of filter criteria is in Read operations (i.e., GET
messages), specification of filter criteria in other types of request messages is possible, for
example, a Delete operation (i.e., DELETE message) that deletes instance resources
satisfying a filter criteria.

Filter criterion are expressed in the URI query component with the $filter parameter (an
OData system query option). The filter criterion value is expressed as property-value pairs.

For any request message upon a collection resource, the following rule applies:

R102 The $filter parameter MUST be used to specify the filter criterion.

R102.1 The filter criterion value MUST be composed of one or more of the following
expressions: comparison expression, logical expression, built-in functional
expressions.

R103 A comparison expression MUST adhere to the OData specification [OASIS (2014b)]) and
be limited to one of the following:

left-operand “ eq ” right-operand
- which returns true if the left operand is equal to the right operand, otherwise it returns
false
left-operand “ ne ” right-operand
- which returns true if the left operand is not to the right operand, otherwise it returns
false
left-operand “ gt ” right-operand
- which returns true if the left operand is greater than the right operand, otherwise it
returns false
left-operand “ ge ” right-operand
- which returns true if the left operand is greater than or equal the right operand,
otherwise it returns false
left-operand “ lt ” right-operand
- which returns true if the left operand is less than the right operand, otherwise it returns
false
left-operand “ le ” right-operand
- which returns true if the left operand is less than or equal the right operand, otherwise it
returns false

RESTful API Web Design

Page 71 of 163

R104 A logical expression MUST be limited to one of the following:

left-operand “ and ” right-operand
- which returns true if both the left and right operands evaluate to true, otherwise it
returns false
left-operand “ or ” right-operand
- which returns false if both the left and right operands evaluate to false, otherwise it
returns true
 “not ” operand
- which returns true if the operand returns false, otherwise it returns false

R105 A built-in functional expression be limited to one of the following:

“contains” “(“string”,”string”)”
- which returns true if the second parameter value is a substring of the first parameter
value, otherwise it returns false.

R106 Precedence of expressions MUST be specified with the grouping operator, open and
closed parenthesis, “(“ and”)”.

The following example illustrates a filter that constrains a collection resource to workers in
the role of employee in the job code of business analyst.

/hr/v1/workers?$filter=role eq ‘employee’ and jobCode eq ‘business-analyst’

The following example illustrates a filter that constrains a collection resource to associates
with addresses that have postal code of 11122 or 22233 and status of active.

/hr/v1/associates?$filter=(address/postalCode eq ‘11122’ or address/postalCode eq ‘22233’) and status eq ‘active’

The following example illustrates a filter that constrains a collection resource to associates
with a family name that contains smith.

/hr/v1/associates?$filter=contains(familyName, ‘smith’)

8.1.1.2 “any/all” Lambda Operators

Cases exist where it is necessary to filter a collection resource based on a given property
value for instances in a nested collection resource. There are two possible cases. In the
first case, the filter restrict results to anyinstance in the nested collection resource that
have a given property value. In the second case, the filter restrict results that have all (i.e.,
only) instances in the nested collection resource with a given property value.

In first case, consider the example of a filter needed to find all work assignments (of a
worker) that have any work location in a particular city.

/hr/v1/workers/12121212/work-assignments?$filter=assigned-work-locations/any(x:
x/address/cityName eq 'Charlotte')

In the second case, consider the example of a filter needed to find all work assignments (of
a worker) that have all (only) work locations in a particular city.

/hr/v1/workers/12121212/work-assignments?$filter=assigned-work-locations/all(x:
x/address/cityName eq 'Charlotte')

RESTful API Web Design

Page 72 of 163

OData [OASIS (2014a)] defines two lambda operators for this purpose, any and all, that
evaluate a boolean expression on a collection resource. The argument of a lambda operator
is a lambda variable name followed by a colon and a boolean expression. The variable
name refers to the property of related collection resource.

The any operator applies a boolean expression to each instance on a collection
resource. The value of true is returned if the expression evaluates to true for any instances
of the collection resource, otherwise false is returned.

The all operator applies a boolean expression to each instance on a collection
resource. The value of true is returned if the expression evaluates to true for all instances
of the collection resource, otherwise false is returned.

The remaining types of query criteria are discussed in the following subsections, in the
context of the applicable resource management operation.

 Query Criteria in the Path Component
A resource path that identifies a collection may be constructed with a specific resource
management criterion that is to be applied against the collection. The criterion is included
in the resource path located in path component of the URI as part of an HTTP message.

This specification uses a subset of the OData Version 4.0 URL Conventions [OASIS (2014b)]
syntax for the representation of different types of resource path query criteria in the URI:

• count instruction

Use of the count instruction is described in the context of the Read operation, below.

 CRUD Operations
A client’s request message to a server may be part of a CRUD operation. A CRUD operation
request message comprises: identification of the resource being managed, one of the CRUD
operators (Create, Read, Update, or Delete), and conditionally a resource representation
and message headers.

This section specifies the language to be used in the communication of CRUD operations.

This section describes:

• The language constructs for defining CRUD operations
• Rules associated with the use of CRUD operations.

RESTful Web APIs leverage the HTTP request methods to define resource management
operations.

The following table lists the request methods, description and related CRUD operator.

RESTful API Web Design

Page 73 of 163

HTTP
Method

Description CRUD
Operator

Idempotent10 Safe11

OPTIONS Method used to retrieve metadata
about the communications options
implemented by the server and
applicable to that resource (e.g. the
entity header, Allow, which lists the
methods supported by the resource at
the specified URI at the server).12

Read Yes Yes

GET Method used to retrieve representation
of a resource’s state at a specified URI
at the server.

Read Yes Yes

HEAD Method used to retrieve only the
metadata associated with a resource’s
state at a specified URI at the server.
The metadata contained in the
message headers in response to a
HEAD request should be identical to
the metadata contained in the message
headers in response to a GET request.

Read Yes Yes

PATCH Method use to request a modify
resource at the specified URI at the
server.

Update No No

POST Method used to create a new resource
within a collection at the specified URI
at the server.

Create No No

PUT Method used to replace a resource at
the specified URI at the server.

Update Yes No

DELETE Method to delete the resource identified
by the specified URI at the server.

Delete Yes No

Recall the RESTful Web API Maturity Model, described above. At Level 0, HTTP is essentially
used as a tunneling mechanism. In tunneling, the message’s intent is encapsulated (e.g. in
the message-body) and/or misrepresented. At a Level 2 maturity level, tunneling is not

10 Methods have the property of idempotence if the side-effects of N>0 identical requests is
the same as for a single request. [Fielding et al (1999)]
11 Methods have the property of safe if there are no side-effects of a request (i.e., Read
operations). [Fielding et al (1999)]
12 The description of the OPTIONS method is in the context of a Read operation on a
resource. The OPTIONS method may also be used to retrieve a server’s communication
options, in general.

Table 6: HTTP Request Methods for Resource Data Management

RESTful API Web Design

Page 74 of 163

permitted; all Create, Read, Update and Delete (CRUD) operators performed on a resource
must use the established HTTP methods (e.g. POST, GET) for those operators.

R107 The HTTP request methods (e.g. POST) SHOULD NOT be used to tunnel other HTTP
request methods.

R108 Request messages for CRUD operations SHOULD use the established HTTP methods
for those operations.

Note: CRUD operators (e.g. get) must not be represented in the URI.

RESTful API Web Design

Page 75 of 163

Table 7 shows how the HTTP methods are used to represent the CRUD operators (according
to the different resource types).

HTTP
Method

Usage
(by resource type identified

in the request URI path)
 = entity may be included

Collection
Resource

Instance
Resource

OPTIONS Read Read

GET Read13 Read

HEAD Read Read

PATCH Update14 Update

POST Create15 N/A

PUT Update16 Update

DELETE Delete17 Delete

The following sections provide the specifications for defining CRUD operations (shown in the
table, above) on both Collections and Instance Resources.

13 GET on a Collection Resource reads all instance resources in the collection; it is used in
the request message of a bulk operation. A URI query component may serve to limit the
instance resources to a subset of the collection.
14 PATCH on a Collection Resource updates (incrementally) one or more instance resources
in the collection; it is used in the request message of a bulk operation. Each instance
resource being updated is represented in the entity-body.
15 POST on a Collection Resource creates one or more instance resources in the collection;
it is used in the request message of a bulk operation. Each instance resource being created
is represented in the entity-body.
16 PUT on a Collection Resource update (replace) all instance resources in the collection; it
is used in the request message of bulk operation. A URI query component may serve to
limit the instance resources being replaced to a subset of the collection.
17 DELETE on a Collection Resource may delete all instance resources in the collection; it is
used in the request message of a bulk operation. A URI query component may serve to
limit the instance resources being deleted to a subset of the collection.

Table 7: HTTP Request Method Usage for CRUD Operations

RESTful API Web Design

Page 76 of 163

8.3.1 Create Operations

A Create operation is a resource management operation used for the creation of an instance
resource. This section describes the language elements for the definition and use of request
messages of Create operations.

As shown in Table 6, HTTP provides a method for Create operations.

• The POST method is used to create an instance resource(s) within a collection resource.

R109 The HTTP POST method MUST be used to create a new instance resource in a
collection resource.

For any POST message, creating an instance resource, the following rule applies:

R110 The URI path component MUST be used to specify the resource collection where the
resource is to be created.

R111 A message-body that contains the representation of the instance resource to be created
MUST be included in the request message.

The following example uses the POST request on a collection resource to create an associate
in the collection resource of associates.

POST /hr/v1/associates HTTP/1.1
Host: api.abc.com
Accept: application/json
Content-Type: application/json
{

 “associates” : [{
 “person” : {
 “personNames” : [{
 “typeCode” : {
 “codeValue” : “Birth”
 }
 “givenName” : “John”,
 “middleName” : ”Steve”
 “familyNames” : [{
 ”nameValue” : “Smith”,
 “primaryIndicator” : true
 }]
 …
 }]
 “birthDate”: ”1970-02-01”
 …
 }
 }]
}

RESTful API Web Design

Page 77 of 163

8.3.2 Update Operations

An Update operation is a resource management operation used for the update of a collection
or instance resource. This section describes the language elements for the definition and
use of request messages for Update operations.

There are two types of update operations:

• Full update (aka Replace or Snapshot Update)
• Partial update (aka Incremental Update)

In the partial update only the subset of the resource that has been changed or modified is
updated in the server’s resource representation; this is in contrast to a full or replacement
update, the complete resource that has been changed or modified is updated in the server’s
resource representation.

As shown in Table 6, HTTP provides two methods for Update operations.

• For full update, the PUT method is used to replace a resource (e.g. a collection or
instance resource).

• For partial update, the PATCH method is used to modify a resource (e.g. a collection or
instance resource).

R112 The HTTP PUT method MUST be used to replace a representation of an existing
collection or instance resource.

Note: The PUT method communicates a replacement (i.e., snapshot or full refresh) of
the collection or instance resource. Therefore, a client must send all properties that it
manages (even if those properties did not change).

For any PUT message replacing a resource, the following rule applies:

R113 The URI path component MUST be used to specify the identification of the collection or
instance resource to be replaced.

R114 A message-body that represents the replacement of the collection or instance resource
representation MUST be included in the request message.

The following example illustrates a PUT request on an instance resource that communicates
a complete replacement of an existing associate representation.

PUT /hr/v1/associates/12121212 HTTP/1.1
Host: api.abc.com
Accept: application/json
Content-Type: application/json
{

 “associates” : [{
 “associateID” : {
 “idValue” : “12121212”
 },
 “person” : {
 “personNames” : [{
 “typeCode” : {
 “codeValue” : “Birth”
 }

RESTful API Web Design

Page 78 of 163

 “givenName” : “John”,
 “middleName” : ”Steve”
 “familyNames” : [{
 ”nameValue” : “Smith”,
 “primaryIndicator” : true
 }]
 …
 }]
 “birthDate”: ”1970-02-01”
 …
 }
 }]
}

Updating a component of a resource (e.g. an Address of an Associate) using the resource
URI is discouraged. Instead the component should have its own URI and its own entity-tag,
supporting the use of the If-Match header for conditional update requests at the
component level.

For any PATCH message modifying a collection or instance resource, the following
rule applies:

R274 The HTTP PATCH method MUST be used to modify a representation of an existing
collection or instance resource.

Note: The PATCH method communicates a modification (i.e. incremental or delta) of the
collection or instance resource.

R275 The URI path component MUST be used to specify the identification of the collection or
instance resource to be modified.

R276 A message-body that represents the modification to the collection or instance resource
representation MUST be included in the request message.

The following example illustrates a PATCH request on an instance resource that
communicates a modification to an existing associate representation.

PATCH /hr/v1/associates/12121212 HTTP/1.1
Host: api.abc.com
Accept: application/json
Content-Type: application/json
{

 “associates” : [{
 “associateID” : {
 “idValue” : “12121212”
 },
 “person” : {
 “birthDate”: ”1970-03-01”
 }
 }]
}

RESTful API Web Design

Page 79 of 163

Note: The component-level action code may be used in conjunction with the PATCH (e.g.
An Associate instance resource, whose Name and Address components to be updated, are
included in the entity-body; both components, personName and address, communicate a
“Change” (aka update) action code. Only those fields (with the exception of identifier fields)
that are to be updated are included in the component (e.g. only givenName and postalCode
are updated and included in the entity-body for the personName and address components,
respectively. Such use, however, would most likely not be able to leverage the entity-tag to
make the update conditional (see the following note).

Note: A conditional PATCH request, that makes use of the entity-tag in the If-Match
header (see the section below, Conditional Operations) may have the effect of preventing an
allowable update to a resource property (that has remained unchanged while the resource
(i.e., entity-body associated with the entity-tag), as a whole, has changed.

8.3.3 Delete Operations

A Delete operation is a resource management operation used for the removal of an instance
resource. This section describes the language elements for the definition and use of
request messages for Delete operations.

As shown in Table 6, HTTP provides a method for Delete operations.

• The DELETE method is used to remove a resource (e.g. a collection or instance
resource).

R116 The HTTP DELETE method MUST be used to remove an existing collection or instance
resource.

For any DELETE message removing resource, the following rule applies:

R117 The URI path component MUST be used to specify the identification of the collection or
instance resource to be removed.

The following example illustrates a DELETE request on an instance resource.

DELETE /hr/v1/associates/12121212 HTTP/1.1
Host: api.abc.com

Once a DELETE request for an instance resource has been processed, the instance resource
is no longer available to clients.

8.3.4 Read Operations

A Read operation is a resource management instruction used for the retrieval or query of
instance resources. This section describes the language elements for the definition and use
of request messages for Read operations. The definition and use of response messages are
also described in support of successive read requests as part of pagination.

As shown in Table 6, HTTP provides three methods for Read operations.

• The GET method is used to retrieve the state of instance resources in a representation.
• The HEAD method is similar to the GET method, except the server will not return a

resource representation in the response message-body; instead the server returns only
the headers.

• The OPTIONS method is used to retrieve metadata that identifies the methods
supported for a resource.

RESTful API Web Design

Page 80 of 163

R118 The HTTP GET method MUST be used to retrieve a representation of a resource.

Note: This includes the following resource types: Instance, Collection.

The following example illustrates a GET request on a collection resource that returns a list
of associates in the response message-body.

GET /hr/v1/associates HTTP/1.1
Host: api.abc.com

R119 The HTTP HEAD method SHOULD be used to retrieve metadata associated with a
resource. The metadata is returned in a response with message headers and no
message-body.

The following example illustrates a HEAD request on an instance resource that returns a
response with message headers without the message-body.

The request:

HEAD /hr/v1/associates/12121212 HTTP/1.1
Host: api.abc.com

The response to the request:

HTTP/1.1 200 OK
Content-Type: application/json

R120 The HTTP OPTIONS method SHOULD be used to retrieve metadata identifying
communication options available for a resource.

Note: This includes the following resource types: Instance, Collection, Controller.

R120.1 For an instance or collection resource, the response MUST include an Allow header
that lists the valid HTTP methods for the requested resource.

R120.2 For a controller resource, the response MUST include an OAGi-Allow-
CustomOperator header that lists the valid custom operators for the requested
resource.

The following example illustrates an OPTIONS request on an instance resource that returns
a response with message headers that includes an Allow header that lists the HTTP methods
allowed at the specified instance resource.

The request:

OPTIONS /hr/v1/associates/12121212 HTTP/1.1
Host: api.abc.com

The response to the request:

HTTP/1.1 200 OK
Allow: GET, PUT, DELETE

RESTful API Web Design

Page 81 of 163

For any GET message for a resource, the following rule applies:

R121 A client MUST NOT include a message-body.

8.3.4.1 Specifying Selection Criterion (for a Partial Response)

A client, requesting a resource representation, may specify a subset of a resource’s
properties that are to be returned in the response. As the response includes only a part of
the resource, it is commonly referred to as a partial response. This section describes how
selection criteria are to be represented in a RESTful Web API’s GET messages.

Selection criterion may be applied in a request message of a read operation for a resource
(e.g. a collection or instance resource).

Selection criterion is expressed in the URI query component with the $select parameter (an
OData system query option). The $select parameter may express both simple properties
such as attributes and complex properties such as other object classes. Selection criterion
may be used to specify properties that are to be returned in the response.

For any GET message for a resource, the following rule applies:

R122 The $select parameter MUST be used to specify the selection criterion.

R122.1 The selection criterion value MUST specify a list of properties to be returned in the
response.

The list of properties in the selection criterion informs the server that those properties are to
be included in the resource representation of the response. If a property is not included, this
informs the server that the property is not to be included in the response.

R122.1.1 The properties of the selection criterion value MUST be delimited by a comma “,”.

R122.1.2 The star “*” operator MUST be used to specific all properties.

The following example illustrates a GET request on an instance resource that specifies the
properties to be returned in the response include the person name and address properties.

GET /hr/v1/associates/12121212?$select=personName,address HTTP/1.1
Host: api.abc.com

The following example illustrates a GET request on an instance resource that specifies a list
of properties that includes two nested properties, line3 and line4, of the address complex
property of the associate.

GET /hr/v1/associates/12121212?$select = personName,address/line3,address/line4 HTTP/1.1
Host: api.abc.com

8.3.4.2 Specifying Expansion Criterion

A client may specify a set of related resources to be included in line with the returned
resource representation using an expansion criterion. A resource may have related
resources; more specifically, an associating resource (i.e., acting as a source resource) may
be related to associated resources (i.e., acting as target resources). By default, related
resources are not included in line with the returned resource representation. The default

RESTful API Web Design

Page 82 of 163

behavior avoids unnecessarily large representations, improving communication efficiency
and performance. This section describes how the expansion criterion are to be represented
in a RESTful Web API’s GET messages.

Expansion criteria may be applied in a request message of a read operations for a resource
(e.g. a collection or instance resource). This criterion is expressed in the URI query
component with the $expand parameter (an OData system query option) and specifies one
or more target resources that are related to the source resource, identified in the URI path
component.

Note: Use of the expansion criterion requires that an API specification indicate, for a given
resource, all related resources that are expandable.

 For any GET message for a resource, the following rule applies:

R123 The $expand parameter MUST be used to specify the expansion criterion.

R123.1 The expansion criterion value MUST specify a list of related resources to be returned
in the response.

The list of related resources in the expansion criteria informs the server that those
resources are to be included in the resource representation of the response. If a related
resource is not included, this informs the server that the resource is not to be included in
the response.

 R123.1.1 The related resources of the expansion criteria value MUST be delimited by a
comma “,”.

R123.1.2 The star “*” operator MUST be used to specify all related resources.

Recall (above) that the selection criterion is used to specify a subset of a resource's
properties to be returned in the response; if no selection criterion exists then all the
resource's properties are to be returned in the response. When using an expansion
criterion, a selection criterion specified upon the resource identified in the URI path
component may also include an expanded resource and its properties.

The following example illustrates a GET request on a collection resource, associates, that
specifies a related resource, work assignments, to be returned in the response.
 GET /hr/v1/associates?$select=personName,workAssignments/positionTitle&expand=workAssignments HTTP/1.1
Host: api.abc.com

The following example illustrates a GET request on a collection resource, associates, that
specifies two related resources, work assignments and employer, to be returned in the
response.

GET
/hr/v1/associates?$select=personName,workAssignments/positionTitle,employer/name&expand=workAssignments,
employer HTTP/1.1
Host: api.abc.com

RESTful API Web Design

Page 83 of 163

OData [OASIS (2014b)] also allows the use of query criterion within the expansion criterion
to further qualify the expansion. The allowed query criteria include: selection criterion
($select), expansion criterion ($expand), filter criterion ($filter), start sequence criterion
($skip), maximum number criterion ($top), count criterion ($count), ordering criterion
($orderby) and search criterion ($search). When applied to an expansion criterion, the
query criteria must be a semicolon-delimited list of query criterion, enclosed in parenthesis
and appended to the related resource being expanded.

R123.2 Query criteria MAY be appended to the related resource being expanded.

R123.2.1 The query criteria MUST be delimited by a semicolon ";" and enclosed in
parenthesis.

Consider an expansion criterion that has been appended with a selection criterion; the
selection criterion is specified upon an expanded resource to specify a subset of the
expanded resource's properties to be returned in the response. Recall that by default, if no
selection criterion exists within the expansion criterion, then all the expanded resource's
properties are to be returned in the response.

The following example illustrates a GET request on a collection resource that specifies the
related resources to be returned in the response to include the associate’s work
assignments' position titles, and work location city.

GET
/hr/v1/associates?$expand=workAssignments($select=jobCode,jobTitle,positionID,positionTitle,homeWorkLocation/
address/cityName) HTTP/1.1
Host: api.abc.com

The following example illustrates an expansion criteria that has been appended by two other
query criteria. The example further qualifies the previous example by filtering the related
resources (i.e. workAssigments) to those workers that are executives.
GET
/hr/v1/associates?$expand=workAssignments($select=jobCode,jobTitle,positionID,positionTitle,homeWorkLocation/
address/cityName;$filter=executiveIndicator eq ‘true’) HTTP/1.1
Host: api.abc.com

8.3.4.3 Specifying Instance Resource Start Sequence Criterion

A client may specify the start sequence (or start position) from which instance resources of
a collection or instance resource set are be returned in a response. An instance resource
set (or set of instance resources) is determined by a server to satisfy the set’s membership
criteria (i.e., selection, filter, expansion and search criteria) of a resource management
request (e.g. GET request) upon a collection resource. The server uses the start sequence
criterion to identify the instance resources (of the instance resource set) to be included in
the response. This section describes how start criterion are to be represented in a RESTful
Web API’s request messages.

RESTful API Web Design

Page 84 of 163

Start sequence criterion is expressed in the URI query component with the $skip parameter
(an OData system query option). The start sequence criterion value is expressed by a
number of instance resources that are to be skipped and not included in the result.
For any GET message upon a collection resource or instance resource set, the
following rule applies:

R124 The $skip parameter MUST be used to specify the start sequence criterion.

R124.1 The start sequence criterion value MUST specify a non-negative integer, n, for the
number of instance resources that are to be skipped and not included in the
response.

Note: The instance resources returned start at sequence, n+1.

The following example illustrates a GET request on a collection resource that specifies the
first 10 associate instance resources should be “skipped” and that the instance resources to
be returned start at sequence 11.

GET /hr/v1/associates?$skip=10
Host: api.abc.com

8.3.4.4 Specifying Instance Resource Maximum Number Criterion

A client may specify a limit on the number of instance resources of a collection or instance
resource set that are to be returned in a response. An instance resource set (or set of
instance resources) is determined by a server to satisfy the set’s membership criteria (i.e.,
selection, filter, expansion and search criteria) of a resource management request (e.g. GET
request) upon a collection resource. The server uses the maximum number criterion to
limit the number of instance resources (of the instance resource set) to be included in the
response. This section describes how this criterion is to be represented in a RESTful Web
API’s request messages.
Maximum number criterion is expressed in the URI query component with the $top
parameter (an OData system query option). The maximum number criterion value is
expressed by a number of instance resources that must not be exceeded in the result.
For any GET message upon a collection resource or instance resource set, the
following rule applies:

R125 The $top parameter MUST be used to specify the maximum number criterion.

R125.1 The maximum number criterion value MUST specify a non-negative integer, n, that
indicates the maximum number of instance resources that may be included in the
result.

The following example illustrates a GET request on a collection resource that specifies the
maximum number of associate instance resources that may be returned is 50.

GET /hr/v1/associates/12121212?$top=50 HTTP/1.1

RESTful API Web Design

Page 85 of 163

8.3.4.5 Specifying Instance Resource Total Number Criterion

A client may specify that a count of the total number of instance resources in a collection
resource or a set of instance resources is to be returned in a response (including the
instance resources). An instance resource set (or set of instance resources) is determined
by a server to satisfy the set’s membership criteria (i.e., selection, filter, expansion and
search criteria) of a resource management request (e.g. GET request) upon a collection
resource. The server uses the total number criterion to determine whether it should
return a count of the total number of instance resources in the response. This section
describes how this instruction is to be represented in a RESTful Web API’s request
messages.
Total number criterion is expressed in the URI query component with the $count parameter
(an OData system query option). The total number criterion value is expressed with a value
of true or false, indicating that server should or should not, respectively, determine and
return a count of the instance resources.
For any GET message upon a collection resource or instance resource set, the
following rule applies:

R126 The $count name MUST be used to specify the count criterion in the query of the URI
query component to return the total number of instance resources, along with the
instance resources, of the related collection resource or instance resource set.

R126.1 The total number criterion value MUST be limited to one of the following:

 “$count=true”
- which indicates that the service should return a count
“$count=false”
- which indicates that the service should not return a count

The following example illustrates a GET request on a collection resource that specifies that a
count of the total number of instance resources in a collection resource be returned. The
total number is returned as a value to the totalNumber parameter of an object class called
meta; this object class and response parameter are defined in the pagination section,
below.

GET /hr/v1/associates?count=true HTTP/1.1
Host: api.abc.com
Accept: application/json

The response to the Get request:

HTTP/1.1 200 OK
Content-Type: application/json
{

“meta”: {
 “totalNumber” : 25,
 }
 {resourceRepresentation}
}

A client may also specify that a count of the total number of instance resources in a
collection resource or instance resource set (specified by additional filter or search

RESTful API Web Design

Page 86 of 163

instructions) is to be returned in a response (that does not include the instance
resources). The server uses the count criterion to determine whether it count and return
the total number of instance resources in the response. This section describes how this
instruction is to be represented in a RESTful Web API’s request messages.

The count instruction is expressed by appending $count to the resource path of URI path
component.

For any GET message upon a collection resource or instance resource set, the
following rule applies:

R252 The $count name MUST be used to specify the count criterion on a resource path of the
URI path component to return the total number of instance resources of the related
collection resource or instance resource set.

The following example illustrates a GET request on a collection resource that specifies that a
count of the total number of instance resources in a collection resource be returned. The
total number is returned as a value to the totalNumber parameter of an object class
called meta; this object class and response parameter are defined in the pagination
section, below.
GET /hr/v1/associates/$count HTTP/1.1
Host: api.abc.com
Accept: application/json

The response to the Get request:

HTTP/1.1 200 OK
Content-Type: application/json
{

“meta”: {
 “totalNumber” : 1025
 }
}

8.3.4.6 Specifying Order Criterion

A client may specify the order in which instance resources of a collection or instance
resource set are to be returned in a response. An instance resource set (or set of instance
resources) is determined by a server to satisfy the set’s membership criteria (i.e., selection,
filter, expansion and search criteria) of a resource management request (e.g. GET request)
upon a collection resource. The server uses the order criterion to sort the instance
resources (of the instance resource set) to be returned in the response. This section
describes how this criterion is to be represented in a RESTful Web API’s request messages.

Order criterion are expressed in the URI query component with the $orderby parameter
(an OData system query option). The order criterion value is expressed by a comma-
separated list of expressions that are used to sort the instance resources.

For any GET message upon a collection resource or instance resource set, the
following rule applies:

R127 The $orderby parameter MUST be used to specify the order criterion.

RESTful API Web Design

Page 87 of 163

R127.1 The order criterion value MUST be limited to the following:

 “$orderby=”property-name [“ asc”| “ desc”]

R127.1.1 The asc suffix MUST be used to specify an ascending order.

R127.1.2 The desc suffix MUST be used to specific a descending order.

R127.1.3 If the asc or desc suffix is not specified, then the server MUST order by the
property-name in ascending order.

The following example illustrates a GET request on a collection resource that specifies an
order for associate instance resources in which they are to be returned.

GET /hr/v1/associates?$orderby=personName/familyName asc HTTP/1.1
Host: api.abc.com

8.3.4.7 Specifying Search Criterion

A client may specify search criterion in a request message of a read operation upon a
collection resource or instance resource set to constrain the results to a set of instance
resources, satisfying the search criteria. The server uses the search criteria as free-text
search parameters to identify the instance resources of the result. This section describes
how search criteria are to be represented in a RESTful Web API’s request messages.

Search criterion are expressed in the URI query component with the $search parameter
(an OData system query option). The seach criterion value is expressed by a comma-
separated list of expressions that are used to sort the instance resources.

For any request message upon a collection resource or instance resource set, the
following rule applies:

R128 The $search parameter MUST be used to specify the search criterion.

R128.1 The search criterion value MUST be limited to the following:

 “$search=” search-expression

search-expression = search-term | “(“search-expression “)” | [“NOT”] search-
expression [[“AND” | “OR”] search-expression]
- where each search-term returns true if the search-term is matched, otherwise it
returns false
- where a NOT search-expression returns true if the expression is not matched,
otherwise it returns false
- where search-expressions separated by an OR return true if either of the expression
evaluates to true, otherwise it returns false
- where search-expressions separated by an AND if both of the expressions evaluate
to true, otherwise it returns false

RESTful API Web Design

Page 88 of 163

 R128.1.1 The search-term MUST be used to specify a single word or
phrase. A phrase MUST be enclosed in double-quotes, “ ”.

R128.1.2 A group expression MUST be specified with the grouping operator, open and
closed parenthesis, “(“ and “)”.

The following example illustrates a GET request on a collection resource that returns a list of
associates that match the search terms of smith or jones.

GET /hr/v1/associates?$search=smith OR jones HTTP/1.1
Host: api.abc.com

8.3.4.8 Specifying Pagination Criteria

This section discusses the technique for handling multiple instance resources resulting from
an initial Read request upon a collection resource. This technique is also referred to as
pagination.

The technique is necessary when the read results cannot be either returned (by the
responding system) or consumed (by the requesting system) in a single response message
instance. This is often the case when either the requesting or responding systems have
message size performance measures whose thresholds cannot be exceeded in order to
maintain adequate system performance.

The technique leverages a set of pagination-related parameters that are applicable to either
the GET message or the GET response message, GET message page-parameters and GET
response page-parameters, respectively. The GET message page-parameters leverage the
OData types of Query Criteria parameters where applicable. The set of the parameters
communicated in a Get request is referred to the pagination criteria. The parameters rely
on a concept called the instance resource set. An instance resource set, is determined by a
server to satisfy the set’s membership criteria (i.e., selection, filter, expansion and search
criteria) of a resource management request (e.g. GET request) upon a collection resource.

A client may or may not require read consistency as it paginates through the instance
resource set. Requirements for read consistency are specific to the use scenario of a
particular interface. An interface’s specification must indicate whether or not read
operations support pagination and read consistency

Two common approaches for read consistency include:

• The client indicates to the server that read consistency is required. The server may save
the instance resource set in a cache. The implementation might choose to cache a key
set or the full instance resource.

• The client indicates to the server that read consistency is required. The server may use
reflection to alter the instance resources of the page to be returned to the client. The
server may keep track of new and missing instance resources (e.g. via timestamps) and
only includes instance resources in the page that existed at the time the initial request
was made.

• In the case that the client does not require read consistency,
• The client indicates to the server that read consistency is not required. The server does

not need to save the instance resource set. The client accepts the possibility that
inconsistency may exist when paginating through the instance resource set.

RESTful API Web Design

Page 89 of 163

The pagination technique used in this specification, aligns with the first approach (above)
and allows clients to specify whether or not read consistency is required by indicating to the
server that the instance resource set should be saved or not saved, respectively.

GET request message page-parameters:

• $skip - Indicates the instance resources that are to be skipped and not included in the
response. This attribute is specified on subsequent Get requests, not the initial GET
request.18 The client may determine this sequence from the prior GET response (see the
Get response message parameters, below, for more information).

• $top - Communicates the maximum number of instance resources that should be
returned in a response.

• uniqueIndicator - Indicates whether duplicates should be filtered out.
• resourceSetSaveIndicator – Indicates whether the server should save the instance

resource set; a saved instance resource set supports read consistency requirements
while paginating through the instance resource set.

• resourceSetID - Unique identifier of the instance resource set. It is generated by the
server as a result of the original Get request.

GET response page-parameters:

• startSequenceNumber - The instance resource sequence identifying the first resource
returned in the response. The server generates this sequence. It is used by the client to
determine the start sequence of the subsequent Get request.

18 This document differentiates, as needed, initial GET requests from subsequent ones.
Subsequent GET request(s) may be communicated when the initial GET request results in
more records than can be returned in a single response.

Figure 5: Get Request Message

RESTful API Web Design

Page 90 of 163

• completeIndicator - Indicates whether the response completes the return of all the
resources of the instance resource set to the requesting system.

• returnedNumber - Number of instance resources in the response.
• totalNumber - Number of total instance resources in an instance resource set.
• resourceSetID - Unique identifier of the instance resource set. It is generated by the

server as a result of the original Get request

For any GET message using pagination, the following rules apply:

R129 The URI query component MUST be used to specify the pagination criteria (i.e., set of
GET message page-parameters) used to request the number of instance resources to
be included in the response.

R129.1 The pagination criteria MUST be specified as parameter-value pair(s).

Note: The GET message page-parameters represent the parameters available.

R129.1.1 A conjunction of parameter-value pairs MUST be specified by an ampersand “&”.

Figure 6: Get Response Message

RESTful API Web Design

Page 91 of 163

R130 The client MAY assign a value to the parameter:
- $top
to specify the maximum number of instance resources to be returned in a response.

Note: The server may have a message size performance measure with respect to the
message production. Therefore, the number of instance resources in the response
should always correspond to the more restrictive performance measure among the
requesting and responding systems/components. In other words, the resource count in
the response should equal the lesser of the client’s maximum number (of instance
resources) and the server’s maximum number (of resources).

R130.1 If the client has not assigned a value to the $top parameter, then the server MUST
use a default value, deemed appropriate, for the given interface operation as offered
by the server (service provider).

Note: If the server does not maintain a maximum number default for the specific
interface read operations, then the server may assign and use a general default value
across interface read operations, for example19:
- $top=10

R131 The client MAY assign a value to the parameter:
- uniqueIndicator

R132 The server MUST assign a value to the parameters:
- startSequenceNumber
- completeIndicator
- returnedNumber

R133 The server MAY assign a value to the parameter:
- totalNumber20

R133.1 If the server determines that it cannot not provide a value assignment to the
totalNumber parameter, then the server MUST provide a null assignment.

R133.2 If the server determines that no results satisfy the GET request, then the server
MUST return the following assignment:
- totalNumber = 0

19 This value may be adjusted and tends to have an inverse relationship with the size of the
resource representation.
20 Value assignment to the totalNumber parameter requires that the system determine the
total number of instance resources satisfying the GET request. This requires additional logic
to be executed in addition to the read operation that may result in performance issues.

RESTful API Web Design

Page 92 of 163

For any initial GET request using pagination, the following rules apply:

R134 The client MAY assign a value to the parameter:
- resourceSetSaveIndicator
to specify whether or not the server is required to save the instance resource set.

R134.1 If the client requires read consistency, then the client MUST assign the parameter,
resourceSetSaveIndicator = “true”.

R134.1.1 If the client has assigned the parameter, resourceSetSaveIndicator = “true”,
then the server MUST assign and return a value to the resourceSetID parameter
in the response.

R134.2 If the client does not require read consistency, then the client MUST assign the
parameter, resourceSetSaveIndicator = “false”.

R134.3 If the client has not specified a value assignment for the resourceSetSaveIndicator,
then the server MUST default the value to “false”.

R135 The client MUST NOT assign a value to the parameter:
- resourceSetID

R253 The client MAY assign a value to the parameter:
- $skip

For any subsequent GET request using pagination, the following rules apply:

R136 The client MUST assign a value to the parameter:
- $skip
to identify the number of the instance resource from the resource set that are to be
skipped (i.e. not included) in the response.

Note: The $skip must be calculated using the following equation: GetRequesti+1.$skip =
GetRequestResponsei.number + GetRequesti.$skip, where i represents a Get request
and Get request response pair. The number of instance resources returned is always
limited by the value of the $top parameter specified by the client in the Get request. This
parameter is set per the message size performance measure of the client with respect to
message consumption.

R136.1 The $skip parameter SHOULD be initialized at “1”.

R137 The client MUST NOT include the parameter:
- resourceSetSaveIndicator

R138 If the server has returned a value to the resourceSetID parameter in the response, then
the client MUST use this value in the resourceSetID assignment of the request.

RESTful API Web Design

Page 93 of 163

R139 The server MUST return the GET response page-parameters in an object class,
named paginationResponse, in the message-body of the response to a GET request.

Recall that a client may or may not require read consistency as it paginates through the
instance resource set. In the first case, the client indicates to the server that read
consistency is required. In the second case, the client indicates to the server that read
consistency is not required. The following two sections describe these two cases and
provide examples.

8.3.4.8.1 Client Requires Pagination Read Consistency
The client specifies in the initial GET request that pagination read consistency is not required
(by having assigned the resourceSetSaveIndicator parameter to “false”). In this case,
the server may or may not save an instance resource set.

Note: Although it is not necessary to save an instance resource set from the client’s
perspective, the server may still elect to save an instance resource set.

The server may uniquely identify the instance resource set (i.e., resourceSetID
parameter) and return its identifier in the GET request response along with additional
information on the instance resources, such as the number of instance resources (i.e.,
returnedNumber parameter) being returned. If an instance resource set identifier (i.e.,
resourceSetID parameter) was provided, then it must be specified on any subsequent Get
requests where additional instance resources of the set are requested.

An Example

A client sends a GET request for all associates (in an organization), where no more than 10 associates are to be
returned in a single response. The client does not require read consistency and informs the server that it does not
need to save the instance resource set. Subsequent GET requests are issued for additional associates (beyond
those included in the initial response).

The initial Get request:

GET /hr/v1/associates?$top =10 HTTP/1.1
Host: api.abc.com
Accept: application/json

The server processes the GET request, constructs, and executes a query that returns the first 10 associates for the
organization. The server sends the 10 associates in the response message instance.

The response to the initial Get request:

HTTP/1.1 200 OK
Content-Type: application/json
{

“paginationResponse”: {
 “startSequenceNumber” : 1,
 “returnedNumber” : 10,
 “totalNumber” : 25,
 “completeIndicator” : false
 }
 {resourceRepresentation}
}

The client, having received the response, then requests the next 10 associates. It sends the following GET request:

RESTful API Web Design

Page 94 of 163

GET /hr/v1/associates?$top =10&$skip=10 HTTP/1.1
Host: api.abc.com
Accept: application/json

The server processes the GET request returns the following response:

HTTP/1.1 200 OK
Content-Type: application/json
{

“paginationResponse”: {
 “startSequenceNumber” : 11,
 “returnedNumber” : 10
 “totalNumber”: 25
 “completeIndicator” : false
 }
 {resourceRepresentation}
}

The client, having received the response, makes a final request for the remaining associates. It sends the following
GET request:

GET /hr/v1/associates? $top =10&$skip=20 HTTP/1.1
Host: api.abc.com
Accept: application/json

The server processes the GET request returns the following response:

HTTP/1.1 200 OK
Content-Type: application/json
{

“paginationResponse”: {
 “startSequenceNumber” = “21”
 “returnedNumber” = “5”`
 “totalNumber” = “25”
 “completeIndicator” = “true”
 }
 {resourceRepresentation}
}

 A client sends a GET request for all associates (in an organization), where no more than 10 associates are to be
returned in a single response. The client requires read consistency and requests that the server save the instance
resource set. Subsequent GET requests are issued for additional associates (beyond those included in the initial
response).

The initial Get request:

GET /hr/v1/associates?$top=10&resourceSetSaveIndicator=true HTTP/1.1
Host: api.abc.com
Accept: application/json

The server processes the GET request, constructs, and executes a query that returns the first 10 associates for the
organization. The server sends the 10 associates in the response message instance.

The response to the initial Get request:

HTTP/1.1 200 OK
Content-Type: application/json
{

“paginationResponse”: {
 “startSequenceNumber” : 1,

RESTful API Web Design

Page 95 of 163

 “returnedNumber” : 10,
 “totalNumber” : 25,
 “completeIndicator” : false
 “resourceSetID” : “7001”
 }
 {resourceRepresentation}
}

The client, having received the response, then requests the next 10 associates. It sends the following GET request:

GET /hr/v1/associates?$top=10&$skip =10&resourceSetID=7001 HTTP/1.1
Host: api.abc.com
Accept: application/json

The server processes the GET request returns the following response:

HTTP/1.1 200 OK
Content-Type: application/json
{

“paginationResponse”: {
 “startSequenceNumber” : 11,
 “returnedNumber” : 10
 “totalNumber”: 25
 “completeIndicator” : false

 “resourceSetID” : “7001”
 }
 {resourceRepresentation}
}

The client, having received the response, makes a final request for the remaining associates. It sends the following
GET request:

GET /hr/v1/associates? $top=10&$skip=20&resourceSetID=7001 HTTP/1.1
Host: api.abc.com
Accept: application/json

The server processes the GET request returns the following response:

HTTP/1.1 200 OK
Content-Type: application/json
{

“paginationResponse”: {
 “startSequenceNumber” = “21”
 “returnedNumber” = “5”`
 “totalNumber” = “25”
 “completeIndicator” = “true”
 “resourceSetID” : “7001”
 }
 {resourceRepresentation}
}

When leveraging this approach, the instance resource set timeout settings should be
maintained by the responding system. Once threshold for an instance resource timeout has
been met the responding system may recover the system resources that were used to
manage that instance resource set. Timeout settings should be agreed to between trading
partners as part of the service level agreement of the interface contract.

RESTful API Web Design

Page 96 of 163

8.3.4.8.2 Client Does Not Require Pagination Read Consistency
The client specifies in the initial GET request that pagination read consistency is not required
(by having assigned the resourceSetSaveIndicator parameter to “false”). In this case,
the server may or may not save an instance resource set.

Note: Although it is not necessary to save an instance resource set from the client’s
perspective, the server may still elect to save an instance resource set.

The server may uniquely identify the instance resource set (i.e., resourceSetID
parameter) and return its identifier in the GET request response along with additional
information on the instance resources, such as the number of instance resources (i.e.,
returnedNumber parameter) being returned. If an instance resource set identifier (i.e.,
resourceSetID parameter) was provided, then it must be specified on any subsequent Get
requests where additional instance resources of the set are requested.

If the server has elected to not save the instance resource set, then the server must re-
execute the initial GET request (i.e., the query) upon any subsequent Get requests where
additional instance resources of the set are requested.

An Example

A client sends a GET request for all associates (in an organization), where no more than 10 associates are to be
returned in a single response. The client does not require read consistency and informs the server that it does not
need to save the instance resource set. Subsequent GET requests are issued for additional associates (beyond
those included in the initial response).

The initial Get request:

GET /hr/v1/associates?$top =10 HTTP/1.1
Host: api.abc.com
Accept: application/json

The server processes the GET request, constructs, and executes a query that returns the first 10 associates for the
organization. The server sends the 10 associates in the response message instance.

The response to the initial Get request:

HTTP/1.1 200 OK
Content-Type: application/json
{

“paginationResponse”: {
 “startSequenceNumber” : 1,
 “returnedNumber” : 10,
 “totalNumber” : 25,
 “completeIndicator” : false
 }
 {resourceRepresentation}
}

The client, having received the response, then requests the next 10 associates. It sends the following GET request:

GET /hr/v1/associates?$top =10&$skip=10 HTTP/1.1
Host: api.abc.com
Accept: application/json

The server processes the GET request returns the following response:

HTTP/1.1 200 OK
Content-Type: application/json
{

RESTful API Web Design

Page 97 of 163

“paginationResponse”: {
 “startSequenceNumber” : 11,
 “returnedNumber” : 10
 “totalNumber”: 25
 “completeIndicator” : false
 }
 {resourceRepresentation}
}

The client, having received the response, makes a final request for the remaining associates. It sends the following
GET request:

GET /hr/v1/associates? $top =10&$skip=20 HTTP/1.1
Host: api.abc.com
Accept: application/json

The server processes the GET request returns the following response:

HTTP/1.1 200 OK
Content-Type: application/json
{

“paginationResponse”: {
 “startSequenceNumber” = “21”
 “returnedNumber” = “5”`
 “totalNumber” = “25”
 “completeIndicator” = “true”
 }
 {resourceRepresentation}
}

8.3.4.9 Specifying View Criterion

A client may specify certain views of a given resource. The selection criterion is used by a
client to specify the subset of a resource's properties to be returned in the response. A
view, on the other hand, is a pre-defined subset of a resource's properties to be returned in
the response.

For any GET request for a resource, the following rules apply:

R283 The view parameter MUST be used to specify the view criterion.

R283.1 The view criterion value MUST specify a view to be returned in the response.

R283.1.1 The view criterion value MUST be limited to an element of the value domain:
“minimal”,
“standard”,
“extended”.

R283.1.1.1 The minimal value MUST be used to indicate the minimal or summary view of
the resource.

R283.1.1.2 The standard value MUST be used to indicate the standard or most common
view of the resource.

RESTful API Web Design

Page 98 of 163

R283.1.1.3 The extended value MUST be used to indicate the extended or more detailed
view of the resource.

GET /hr/v1/associates?view=minimal HTTP/1.1
Host: api.adp.org

8.3.5 Conditional Operations

R115 The If-Unmodified-Since and If-Match headers MAY be used in request messages
of Read, Update and Delete operations to make a request conditional, based on the
entity/resource representation having not changed.

Note: This header is used for optimistic concurrency control. With optimistic
concurrency control, a given request is performed only if the resource representation
was not modified since the datetime (specified in the If-Unmodified-Since header)
and/or if the resource representation entity-tag matches the entity-tag (included in the If-
Match header).

R251 The If-Modified-Since and If-None-Match headers MAY be used in request messages
of Read, Update and Delete operations to make a request conditional, based on the
entity/resource representation having changed.

8.3.6 A Note on Nulls

Null is defined as missing or unknown. A data element’s value may be assigned to Null if
the value of the data element is missing or unknown. This is referred to as a Null
Assignment.

The communication of null assignments for data elements in a resource representation is
limited to partial update requests.

Recall that there are two types of update operations:

• Full update21 (aka Replace or Snapshot Update)
• Partial update22 (aka Incremental Update)

21 In the full update, the complete resource that has been changed or modified is updated in
the server’s resource representation.
22 In the partial update only, the part of the resource that has been changed or modified is
updated in the server’s resource representation.

RESTful API Web Design

Page 99 of 163

R140 A resource representation related to a create, read, and full update request or its results
(i.e. POST request, GET response, and PUT request) MAY communicate data elements
with null assignments.

Note: If data elements with null assignments are excluded from the resource
representation in a message instance, then the server must infer which data elements
have null assignments. This requires that the server understand the relevance of data
elements comprising a message in context of a Service Provider. For example, consider
the data element, personName.middleName, of a person resource that is defined as part
of a message; the data element is not relevant to Service Provider-XYZ (as the Service
Provider does not manage the data element). By knowing the data elements is
relevant/not relevant to a message, the server may infer null assignments for data
elements that are excluded, but relevant, in a message instance. Alternatively, if data
elements with null assignments are included in the resource representation in a message
instance, then the server need not infer which data elements have null assignments.

R277 A resource representation of a partial update request, using the HTTP PATCH method,
MUST communicate those data elements, whose value assignments have been deleted,
with null assignments.

Note: To remove the value assignment of a data element in a resource, the resource
representation must communicate that data element with a null assignment.

 Custom Operations
A client’s request message to a server may be part of a custom operation. A custom
operation (non-CRUD operation) includes: identification of the collection or instance
resource being managed, a custom operator to be invoked on the resource and,
conditionally, a resource representation and message headers.

Request messages of custom operations are used to invoke application-specific operators
that are not supported by one of the standard HTTP methods (representing create, read,
update and delete operators). The operators are specific or customized to the type of
resource; therefore, they are referred to as custom operators.

This section specifies the language to be used in the communication of custom operations in
client requests.

This section describes:

• The language constructs for defining custom operations

• Rules associated with the use of custom operations

RESTful Web APIs leverage the HTTP POST method to define custom operations. Table 1
describes the POST method. HTTP defines the POST method as neither idempotent nor safe
and states that “the actual function performed by the POST method is determined by the
server and is usually dependent on the request URI”. [Fielding et al (1999)] Therefore, the
open-ended POST method is used to convey the equally open-ended application-specific,
non-CRUD, custom operators.

RESTful API Web Design

Page 100 of 163

HTTP
Method

Description Operator Idempotent Safe

POST Method used to execute a custom
operator at the specified URI at
the server.

Non-CRUD
operator

No No

R142 Custom operators MUST NOT be used for CRUD operations.

R143 The HTTP POST method MUST be used to invoke a custom operator on a resource.

A custom operator is expressed in the last path segment of the URI path component. This
path segment follows the identification of the collection or instance resource on which the
operator applies.

For any POST message, of a (non-CRUD) custom operation, the following rule
applies:

R144 A path segment of the URI path component MUST be used to specify the identification of
the operator to be invoked on the identified resource.

R145 If the request message of a custom operation requires a resource representation, then a
message-body that contains the resource representation MUST be included in the
request message.

Note: The URI, comprising the identification of a collection or instance resource in addition
to a custom operator, identifies a controller resource.

For any POST request, communicating a non-CRUD operator, the following rules
apply:

R146 A client MAY include message headers.

R147 A client MAY include a message-body.

The following example illustrates a request message of a custom operation with the
operator, hire, on the associate instance resource, 12121212.

POST /hr/v1/associates/12121212/hire HTTP/1.1
HOST: api.abc.com

Table 8: HTTP Request Method for Custom Operations

RESTful API Web Design

Page 101 of 163

The following example illustrates a request message of a custom operation with the
operator, approve, on the timeOffRequests collection resource.

POST /time/v1/timeOffRequests/approve HTTP/1.1
HOST: api.abc.com

 Bulk Operations
Uses cases exist that require bulk management of similar instance resources (i.e., the
approval of multiple time-off requests) in order to promote greater efficiency in the user
experience and in the message exchange between client and server. This is made possible
with bulk operations.

 A request message of a bulk operation comprises exactly one operator (i.e., CRUD operator
or Custom operator) to be performed on multiple and similar instance resources.

Table 7, above, indicates those HTTP methods, when managing collection resources, used in
request messages of bulk operations (acting upon multiple instance resources).

 A Pattern for Large URIs and Query Components with Sensitive Data
Two patterns are presented in this section to address two common problems associated with
the URI query component:

• Cases where the URI may become large and exceed URI size limitations,
• For example, request messages of bulk operations that specify multiple instance

resources;
• Cases where the URI query component communicates sensitive data (e.g. personal

identifiable information) as filter criteria.
• For example, a GET request for an associate that filters on a tax identifier.

Data that is considered to be sensitive per applicable security policies (e.g., personally
identifiable information (PII)) must not be exposed in an insecure manner. Data that is
represented in the query component of a request’s URI is not secure. Although the SSL
protocol encrypts the query component string, securing the data in transit, overall security
of the data is problematic:

• URIs can be stored in clear text in server logs
• URIs may be stored in clear text in user-agent (e.g. web browser) logs
• URIs are stored in clear text in Referer headers
• URIs can be bookmarked

As a result, sensitive data must not be communicated in the URI query component of that
request’s URI.

RESTful API Web Design

Page 102 of 163

The first pattern, below, leverages creates and saves an instance resource set and requires
two pairs of request-reply messages. [Allamaraju et al. (2010)]

In those cases where either large and/or sensitive data must be communicated in the URI
query component, the systems interaction described, below, must be used.

1. The Service Consumer’s first request specifies a set of instance resources (from a
collection) for the creation of a resource set. It is a POST request to a URI to that
identifies a custom operator, save-resource-set, on the collection being managed.
The entity-body contains the URI (i.e. a large URI and/or query components with
sensitive data) that specifies the instance resources of the collection that are to be
managed. The entity-body must be url encoded.

2. For a successful request, the Service Provider must return a 201 Created response
status code and a URI in the Location header that provides an identifier for the set

Figure 7: Systems Interaction for URIs with Voluminous and Sensitive Data
- Save and Query an Instance Resource Set (Pattern 1)

RESTful API Web Design

Page 103 of 163

of instance resources of the collection to be managed, resourceSetID. An entity-
tag may be provided in the ETag header by the server to identify the version of the
set of instance resources. For unsuccessful requests, see the Confirmation
Management section for a list of possible error status codes.

3. The Service Consumer’s second request communicates the resource management
request on the resource set. It uses the URI, provided in the Location header of the
previous response that identifies the instance resource set. The entity-tag may be
returned in the If-Match header to make the request conditional.

4. For a successful request, the Service Provider returns the 200 OK response status
code and, if applicable, a resource representation (for the operation’s output data) or
a Confirm Message.

Note: This pattern is limited to Read, Update, Delete and Custom operations; Create
operations do not leverage the URI query component. The sequence diagram, below,
illustrates this interaction pattern.

For any request message, with a URI that has a large query component or includes
sensitive data, upon a collection resource (per pattern 1: Save and Query the
Instance Resource Set), the following rules apply:

R148 First, the client MUST send a POST request that identifies a custom operator, save-
resource-set, on the collection resource to create a resource set (i.e., a set of instance
resources).

R148.1 The URI of the request message (i.e. with a large URI and/or query components with
sensitive data) MUST be represented in the entity-body of the POST request as url-
encoded content type.

R148.1.1 The Content-Type header field value MUST be assigned:
“application/x-www-form-urlencoded”.

Note: The application/x-www-form-urlencoded content type (or media type) is
described in the HTML 4.01 Specification [Raggett (1999)]

R148.2 The server, in the case of success, MUST return a 201 Created status with a
resourceSetID in the Location header of the response.

Note: The resourceSetID should be transient. Services leveraging this pattern will
need to determine the transient characteristics of their resourceSetIDs and manage
them accordingly.

R148.2.1 Persistence and availability (i.e. time interval) of the URI, specified in the
Location header, MUST be defined in the API Specification.

R148.3 The server, in the case of success, MAY return an entity-tag in the ETag header to
identify the version of the set of instance resources.

RESTful API Web Design

Page 104 of 163

R149 Second, the client MUST send the request message using the URI returned in the
Location header (in response to the first request) that includes the resourceSetID
which identifies the resource set being managed in the request.

R149.1 The client MAY include the entity-tag URI returned in the ETag header (in response
to the first request) in the If-Match header to the make the request conditional.

The second pattern, below, simplifies the first pattern for read operations by not requiring
the Service Provider to save an instance resource set, thereby limiting the interactions to a
single pair of request-reply messages. [Allamaraju et al. (2010)]

1. The Service Consumer’s first request specifies a set of instance resources (from a
collection) for the read of a resource set. It is a POST request to a URI to that
identifies a custom operator, read-resource-set, on the collection being
managed. The entity-body contains the URI (i.e. a large URI and/or query
components with sensitive data) that specifies the instance resources of the
collection that are to be managed. The entity-body must be url encoded.

2. For a successful request, the Service Provider must return a 200 OK status code
and the representation of the set of instance resources specified in the
request. An entity-tag may be provided in the ETag header by the server to
identify the version of the set of instance resources. The response includes the meta
data associated with the GET response message (e.g., the totalNumber of instance
resources)

Figure 8: Systems Interaction for URIs with Voluminous and Sensitive Data
- Query the Instance Resource Set (Pattern 2)

RESTful API Web Design

Page 105 of 163

3. If the number of instance resources is too large (i.e., greater than the maximum
number of instance resources that either the client or the server can accommodate),
the request will result in a 303 See Other response including a Location header that
provides the URI for a created and saved resource set. The Service Consumer may
then submit GET requests to the URI to retrieve the instance resource
representations using the pagination pattern. Note that the 303 See Other response
will not include any of the instance resource representations.

For any request message, with a URI that has a large query component or includes
sensitive data, upon a collection resource (per pattern 2: Read the Instance
Resource Set), the following rules apply:

R273 First, the client MUST send a POST request that identifies a custom operator, read-
resource-set, on the collection resource to read a resource set (i.e., a set of instance
resources).

R273.1 The URI of the request message (i.e. with a large URI and/or query components with
sensitive data) MUST be represented in the entity-body of the POST request as url-
encoded content type.

R273.1.1 The Content-Type header field value MUST be assigned:
“application/x-www-form-urlencoded”.

Note: The application/x-www-form-urlencoded content type (or media type) is
described in the HTML 4.01 Specification [Raggett (1999)]

R273.2 The server, in the case of success, MUST return a 200 OK status and, if applicable,
the representation of the set of instance resources specified in the request.

R273.3 The server, in the case of success, MAY return an entity-tag in the ETag header to
identify the version of the set of instance resources.

Factors for consideration in the use of the second pattern are provided below. [Allamaraju et
al. (2010)]

Advantages:

• A response can be obtained for the results of a read request in a single request-response
interaction.

• Atomicity of a bulk request is supported.

Disadvantages:

• Using POST for read operations weakens the HTTP's uniform interface since GET is
defined for safe and idempotent read operations.

• The results are not cacheable causing the server to respond for the same request; this
introduces extra latency for the client and reduced scalability for the server.

RESTful API Web Design

Page 106 of 163

9 Hypermedia Controls

A resource’s current state representation may include hypermedia controls (i.e. links)
representing actions and associations that are available on a resource in a given state. Both
actions and associations are described with link relations. This specification leverages the
JSON Schema [Zyp et al. (2013b)] link description object class to describe link relations.

R150 The Link object class MUST be used to represent hypermedia controls in a message.

In the context of a message schema, the link description object is used to define the link
relations of the message instances. [Zyp et al. (2013b)] The properties of the Link object
class are defined, below:

href - The value of the href link description property is a template used to determine the
target URI of the related resource. The value should be resolved as a URI.

rel - The value of the "rel" property indicates the name of the relation to the target
resource.

title - A title for the link. The value must be a string. User agents MAY use this title when
presenting the link to the user.

targetSchema - Schema that defines the expected structure of the resource representation
(e.g. JSON representation) of the target of the link (of the response), if the target of the
link is returned with a representation.

mediaType - The media type of the link target.

method - Method for requesting the target of the link.

encType - The media type in which to submit data along with the request.

Figure 9: Link Description Model

RESTful API Web Design

Page 107 of 163

schema - Schema describing the data to submit along with the request; the schema
defines the acceptable structure of the submitted request. For example, for a GET request,
this schema would define the properties for the query string and for a POST request, this
would define the body.

For any Link instance, the following rules apply:

R151 The properties MUST adhere to the definitions and multiplicity constraints documented
in the Link Description model.

R152 The href value MUST be used to specify a URI template and adhere to the format and
value domains as specified in IETF’s RFC 6570 [Gregorio et al. (2012)].

R52.1 The href value SHOULD be resolved as a URI reference as specified in IETF’s RFC
3986 [Berners-Lee (2005)].

Note: Although relative URIs are supported in RFC 3986, this specification requires
URIs to be absolute.

R153 The targetSchema value is advisory only; it MAY be used by a client to validate the
returned representation, but it MUST NOT be used by a client to aid in the interpretation
of the data received in response to following the link. [Zyp et al. (2013b)]

Note: The interpretation of data risks re-interpreting “safe” data.

R154 The rel value MUST be limited to an element of the value domain:
“alternate”
“create”,
“describedby”,
“edit-form”,
“enclosure”,
“full”,
“related”,
“root”,
“self”,
“up”,
“first”,
“next”,
“previous”,
“last”
“canonical”,
“search”,
“/oagi/invoke”,
“/oagi/confirm-message”,
“/oagi/codelist”,
“/oagi/externalLink”,
“/oagi/callback”,
“/oagi/processing-status”,
“/oagi/request-result”.

RESTful API Web Design

Page 108 of 163

R154.10 The alternate value MUST beused to indicate that the link target identifies an
alternate representation of the current representation.

Note: See the IANA Registry of Link Relations [IANA (2013a)]. The alternate
representation is in the format as specified by the mediaType.

R154.1 The create value MUST be used to indicate a target to use for creating new
instances of a schema. [Zyp et al. (2013b)]

R154.2 The describedby value MUST be used to indicate the target of the link is the
schema for the instance object. [Zyp et al. (2013b)]

Note: See the IANA Registry of Link Relations [IANA (2013a)].

R154.11 The edit-form value MUST be used to indicate that the link target identifies a
resource where a submission form for editing the associated resource can be
obtained.

Note: See the IANA Registry of Link Relations [IANA (2013a)]. Although it is common
to have the value of the link the same as the request URI used to fetch the
representation of the resource, in some cases the server may choose to offer a
separate URI for editing purposes.

R154.12 The enclosure value MUST be used to indicate that the link target identifies a
related resource that is potentially large and might require special handling.

Note: See the IANA Registry of Link Relations [IANA (2013a)].

R154.3 The full value MUST be used to indicate that the target of the link is the full
representation for the instance object. The object that contains this link possibly may
not be the full representation. [Zyp et al. (2013b)]

R154.4 The related value MUST be used to indicate that the target of the link is a related
resource.

Note: See the IANA Registry of Link Relations [IANA (2013a)].

R154.5 The root value SHOULD be used to indicate that the target of the link be treated as
the root or the body of the representation for the purposes of user agent interaction or
fragment resolution. All other data in the document can be regarded as meta-data for
the document. [Zyp et al. (2013b)]

R154.6 The self value MUST be used to indicate the object represents a resource and the
instance object is treated as a full representation of the target resource identified by
the specified URI. [Zyp et al. (2013b)]

Note: See the IANA Registry of Link Relations [IANA (2013a)].

RESTful API Web Design

Page 109 of 163

R154.7 The up value MUST be used to indicate a parent document in a hierarchy of
documents.

Note: See the IANA Registry of Link Relations [IANA (2013a)].

R154.8 The oagi/invoke value MUST be used to indicate the target of the link is a custom
operation.

Note: This is an OAGi-defined link relation.

R154.13 The first value MUST be used to indicate the link context23 is a part of a series (e.g.
"pages" of instance resources) and that the link target is the farthest preceding resource
(or first "page") in the series.

Note: See the IANA Registry of Link Relations [IANA (2013a)].

R154.14 The next value MUST be used to indicate the link context is a part of a series
(e.g. "pages" of instance resources) and that the link target is the next ("page") in the
series.

Note: See the IANA Registry of Link Relations [IANA (2013a)].

R154.15 The previous value MUST be used to indicate the link context is a part of a series
(e.g. “pages” of instance resources) and that the link target is the previous (“page”) in the
series.

Note: See the IANA Registry of Link Relations [IANA (2013a)].

R154.16 The last value MUST be used to indicate the link context is a part of a series
(e.g. "pages" of instance resources) and that the link target is the farthest following (or
last "page") resource in the series.

Note: See the IANA Registry of Link Relations [IANA (2013a)].

R154.17 The canonical value MUST be used to indicate the target of the link is the preferred
version of a resource (from resources with duplicative content).

Note: See the IANA Registry of Link Relations [IANA (2013a)].

23 By default,the context of a link is the URL of the representation with which it is associated. [Nottingham
(2010)]

RESTful API Web Design

Page 110 of 163

R154.18 The search value MUST be used to indicate the target of the link is a resource that can
be used to search through the link context and related resources.

Note: See the IANA Registry of Link Relations [IANA (2013a)].

R154.19 The /oagi/confirm-message value MUST be used to indicate the target of the link is a
confirm message resource.

R154.20 The /oagi/codelist value MUST be used to indicate the target of the link is a codelist
resource.

R154.21 The /oagi/externalLink value MUST be used to indicate the target of the link is a
resource external to the enterprise.

R154.22 The /oagi/callback value MUST be used to indicate the target of the link is a callback
function resource.

R154.23 The /oagi/processing-status value MUST be used to indicate the target of the link is a
resource that can be used to determine the processing status of a submitted request.

R154.24 The /oagi/request-result value MUST be used to indicate the target of the link is a
resource that can be used to obtain the results of a submitted request.

R249 The title property of the Link object class also MAY be used to annotate a Link object with an
application-specific type (e.g. a link to a report)

RESTful API Web Design

Page 111 of 163

R250 The mediaType value MUST be limited to an element of the value domain:
“application/json”,
“text/html”,
“application/pdf”,
“image/jpeg”,
“image/gif”,
“image/png”,
“application/vnd.openxmlformats-officedocument.presentationml.presentation”,
“application/vnd.visio”,
“image/bmp”,
“application/vnd.ms-powerpoint”,
“video/mp4”,
“audio/mpeg”,
“video/x-msvideo”,
“video/x-ms-wmv”,
“application/rtf”,
“text/csv”,
“video/quicktime”,
“application/zip”,
“application/illustrator”,
“text/xml”.

Note: See the IANA Registry of MIME Media Types [IANA]. The Registry provides
references (e.g. RFC) for each media type.

R154.9 A mediaType value MUST be used as defined in its related RFC.

R155 The method value MUST be limited to an element of the value domain:
“DELETE”,
“GET”,
“POST”,
“PUT”,
“PATCH”.

Note: The methods are defined in RFC 2616 [Fielding et al. (1999)].

 A R155.1 method value MUST be used as defined in RFC 2616 [Fielding et al. (1999)]

R156 The encType value MUST be limited to an element of the value domain:
“application/json”,
“application/x-www-form-urlencoded”.

Note: See the IANA Registry of MIME Media Types [IANA] for the application/json
media type. See the HTML 4.01 Specification [Raggett (1999)] for the application/x-
www-form-urlencoded content type (or media type).

RESTful API Web Design

Page 112 of 163

 Hypermedia Actions
Hypermedia actions offer clients a set of possible next steps that may be taken on the
resource in the context of client-server interaction, realizing a use case. Action object is
used to describe a state-sensitive action which the user or user-agent is allowed to initiate
on the related resource. An Action references an operation (i.e. CRUD operation or Custom
operation).

operationCode - Identifies a resource management operation.

canonicalURI - Identifies (uniquely) the resource management operation.

confirmationRequiredIndicator - True indicates that the application will prompt the user
to confirm the selected action. False indicates that the action will be executed once selected
by the user.

commentAllowedIndicator - True indicates that the System of Record (SOR) accepts a
comment when invoking the operation.

defaultIndicator - True indicates that this is the default action.

colorCode - Code identifying the color to associate to the action. A positive action should
be green (e.g. Approval) a negative action (e.g. Denial) should be red; red=FF0000,
yellow=FFFF00, green=80FF00 using RGB codes.

The Attestation contains optional text provided to the user when they take an action to
affirm to be correct, true, or genuine. Use of this requires that
confirmationRequiredIndicator to be set to true. The properties of the Attestation are
defined below.

messageTxt – Message text presented to the user. This is mutually exclusive with the
messageLink which is an external link to the message text. If the text is sizable and fairly
static then it should be accessed with an external link and may be cached.

Figure 10: Hypermedia Actions Logical Model

RESTful API Web Design

Page 113 of 163

messageLink - The link of the attestation message text that should be used instead of the
messageTxt property if it can be cached.

For any Action instance, the following rule applies:

R157 The properties MUST adhere to the definitions and multiplicity constraints documented
in the Hypermedia Actions logical model.

R158 The rel value MUST be limited to an element of the value domain:
“create”,
“describedby”,
“full”,
“related”,
“root”,
“self”,
“up”,
“/oagi/invoke”.

{
 "actions": [
 {
 "operationCode": {
 "codeValue": "timeSheet.review"

 }
 "confirmationRequiredIndicator": true,
 "commentAllowedIndicator": false,
 "links": [
 {
 "rel": "/oagi/invoke",
 "title": "Approve Timesheet",
 "href": " http://api.oagi.com/service-domains/
 /time/v1/timeSheets/123/review",
 "method": "POST"
 }
]
 }
]
}

10 Confirmation Management
The American Heritage dictionary defines confirm as “to support or establish the certainty or
validity of,” and even more specifically as “the act of establishing the certainty or validity.”
RESTful Web APIs use the status-line of the HTTP response message to return request
processing results to client. In addition, a client may request additional information on the
application-level processing of its request. This additional information is made available to
the client with the Confirm Message, an object class specifically designed for this purpose.

The first subsection, below, describes the HTTP Response Status codes and their expected
use. The next subsection explains the mechanism for requesting a Confirm Message
response. The last subsection describes the Confirm Message response.

RESTful API Web Design

Page 114 of 163

 HTTP Response Status
A Level 2 RESTful Web API maturity requires that message confirmation status (i.e. success,
partial failure or failure) use the established HTTP response status codes.

R159 An HTTP Response Status MUST be returned in response to a request.

This section specifies the patterns that are acceptable for conveying confirmation status
back to a requesting client. The status codes and conditions the client must be capable of
handling are described, below. The practice of “suppressing status codes” and managing
status only by interrogating the contents of the message-body must not be performed.

Note: Use of the HTTP response status codes in this specification is intended to consistent
with the HTTP response status codes as defined in W3C’s HTTP 1.1 specification. Any
modifications in regard to the use of the HTTP response status codes in this specification are
limited to changes in requirement levels (e.g. change of requirement from a SHOULD to a
MUST) or the addition of details specific to their use in a RESTful Web API. The purpose of
these modifications is to constrain the space of response code usage to that required for
partner interaction in a trading community.

There are about 60 HTTP response status codes [IANA (2012)]. A subset of these codes is
used in this specification.

R160 Any HTTP response code not mentioned in this section, MUST NOT be used.

There are 5 categories of response status codes:

• 1xx: Informational
• Request received, continuing process
• 2xx: Success
• The request was successfully received, understood and accepted
• 3xx: Redirection
• Further action must be taken in order to complete the request
• 4xx: Client Error
• The request contains bad syntax or cannot be fulfilled
• 5xx: Server Error
• The server failed to fulfill an apparently valid request

The table below summarizes the HTTP response codes supported in this specification.

Category Code Message Description

2xx 200 OK The request was successful and the server’s response
includes the requested data.

 201 Created The request has been fulfilled and resulted in a new
resource being created.

 202 Accepted The request has been accepted for processing, but the
processing has not been completed.

 204 No Content The server has fulfilled the request but does not need to
return an entity-body, and might want to return updated
metadata.

RESTful API Web Design

Page 115 of 163

Category Code Message Description

 206 Partial Content The server has fulfilled the partial GET request.

 207 Multi-Status The server conveys multiple status code about multiple
resources managed in the request.

3xx 301 Moved
Permanently

The requested resource has been assigned a new
permanent URI and any future references to this resource
SHOULD use one of the returned URIs.

 303 See Other The response to the request can be found under a
different URI and SHOULD be retrieved using a GET
method on that resource.

 304 Not Modified If the client has performed a conditional GET request and
access is allowed, but the document has not been
modified, the server SHOULD respond with this status
code.

 307 Temporary
Redirect

The requested resource resides temporarily under a
different URI.

4xx 400 Bad Request The request could not be understood by the server due to
malformed syntax.

 401 Unauthorized The request requires user authentication. If the request
already included Authorization credentials, then the 401
response indicates that authorization has been refused
for those credentials.

 403 Forbidden The server understood the request, but is refusing to fulfill
it.

 404 Not Found The server has not found anything matching the Request-
URI.

 405 Method Not
Allowed

The request method is not allowed for the resource
identified by the request URI.

 406 Not Acceptable The API is not able to generate the any of the client’s
preferred content characteristics according to the
request’s accept headers.

 408 Request Timeout The client did not produce a request within a
predetermined quantity of time.

 409 Conflict The request could not be completed due to a conflict with
the current state of the resource.

 410 Gone The requested resource is no longer available at the
server and no forwarding address is known.

 412 Precondition
Failed

The precondition given in one or more of the request-
header fields evaluated to false when it was tested on the
server.

RESTful API Web Design

Page 116 of 163

Category Code Message Description

 413 Request Entity
Too Large

The requested resource is larger than the server is willing
or able to process.

 415 Unsupported
Media Type

The server is refusing to service the request because the
entity of the request is in a format not supported by the
requested resource for the requested method.

 416 Requested
Range Not
Satisfiable

The server is unable to satisfy a request for a partial
resource representation expressed as a byte range in the
Range header of the request.

5xx 500 Internal Server
Error

The server encountered an unexpected condition which
prevented it from fulfilling the request.

 501 Not Implemented The server does not support the functionality to fulfill the
request.

 503 Service
Unavailable

The server is currently unable to handle the request due
to a temporary overloading or maintenance of the server

Table 9: HTTP Response Status Codes

RESTful API Web Design

Page 117 of 163

HTTP
Response
Code

Usage (by resource type identified in the request URI path)
 = valid response code, = response may include resource representation,

response may include Confirm Message entity

Collection Resource24 Instance Resource Controller
Resource

 OPTIONS GET HEAD PATCH POST PUT DELETE OPTIONS GET HEAD PATCH PUT DELETE POST

200 --

201 -- -- -- -- -- -- -- -- -- -- -- -- --

202

204 -- -- -- --

206 -- -- -- -- -- -- -- -- -- -- -- --

207 -- -- -- -- -- -- -- -- --

301

303

304 -- -- -- -- -- -- -- -- -- -- -- --

307

400

401

403

404

405

406 -- -- -- --

408

409 -- -- -- -- -- -- -- -- --

410

412 -- --

413 -- -- -- --

RESTful API Web Design

Page 118 of 163

24 With the exception of a POST request, the URI query component may serve to limit the instance resources to a subset of the
collection.

415 -- -- -- -- -- -- -- --

416 -- -- -- -- -- -- -- -- -- -- -- --

500

501

503

Table 10: HTTP Response Status Code Usage

RESTful API Web Design

Page 119 of 163

10.1.1 1xx Informational

R161 All 1xx (Informational) responses MUST NOT include a message-body.

10.1.2 2xx Success

This category of response status codes indicates that the request from the client was
received, understood, and accepted.

R162 200 OK - response status code SHOULD be used to inform the client that the request
succeeded.
Note: This is the most common Status Code and should occur most of the time.

R162.1 For a GET request, specifying a resource, the server MAY return a resource
representation in the message-body in the media type specified by the accept
headers in the request.

R162.7 For a GET request, specifying a resource, the server (upon not finding the requested
resource) MUST NOT return a resource representation in the message-body
and MUST return the response meta data parameter, totalNumber (of instance
resources) assigned to the value of "0".

R162.2 For a HEAD request, the server MUST NOT return a message-body.

R162.3 For a PUT or PATCH request, specifying a resource, the server MAY return a
resource representation for the updated resource in the message-body (with the
content characteristics specified by the accept headers in the request) or return a
Confirm Message entity in the message-body (to describe the results from
processing the request).

R162.4 For a custom operator request (i.e., controller resource), the server MAY return a
resource representation in the message-body (with the content characteristics
specified by the accept headers in the request) or return a Confirm Message entity in
the message-body (to describe the results from processing the request).

R162.5 A 200 response status code MUST NOT be used to communicate errors.

R162.6 For GET and HEAD requests caching expiration headers, Cache-Control: max-age
and Expires, MAY be used.

A 201 status code indicates that the request has been fulfilled and resulted in an instance
resource being created in a collection. In the case of a controller resource that as the result
of its execution creates an instance resource, the 200 status must be used.

R163 201 Created - response status code MUST be used to inform the client that the
resource was successfully created.

RESTful API Web Design

Page 120 of 163

R163.1 The origin server MUST successfully create the new resource before returning the
201 response status code.

R163.2 The server MAY return the current value of the entity tag (for representation of the
resource just created) in the ETag header.

R163.3 For a POST request of an instance resource, the server MUST return the URI for the
new resource in the Location header.

R163.4 For a POST request of an instance resource, the server MAY return a resource
representation for the newly created resource in the message-body (with the content
characteristics specified by the accept headers in the request) or return a Confirm
Message entity in the message-body (to describe the results from processing the
request).

If the request can’t be fulfilled immediately, the server must return a 202 status code to
indicate successful acceptance of a request that has not completed processing. The
response representation should include the request’s current processing status. [Fielding et
al. (2014)]

R164 202 Accepted – response status code MUST be used to inform the client that a request
was accepted for processing, but the processing has not been completed.

Note: A 202 Accepted response status code is the preferred method to indicate that
asynchronous processing is occurring. Please see status code 303 to indicate that
processing has completed.

A 204 status code indicates that the server has completed the request but does not need to
return a message-body. This status code is usually sent out in response to an unsafe
request such as a POST, PUT and DELETE request. This indicates that the server has
completed the state transition, but declines to send back any representation or description
of the state transition. A 204 may also be used in conjunction with a GET request to
indicate that the requested resource exists, but has no state representation to return in the
message-body. [Masse (2011), Richardson (2013)]

R165 204 No Content – response code MUST be used to inform the client that the message
body is intentionally empty.

R165.1 If the client is a user agent, the client SHOULD NOT refresh the view that caused the
request to be sent.

R165.2 The server MAY return updated HTTP Header information

R165.3 The server MUST NOT return a message-body in the response.

A 206 status code indicates that the server has completed the partial GET request for the
resource.

RESTful API Web Design

Page 121 of 163

R166 206 Partial Content – response code MUST be used to inform the client that the
message body contains a partial resource representation as requested by the client in
the Range header in the GET request.

R166.1 The server MUST return the Content-Range, Date, ETag (if the header would have
been sent in a 200 OK response), Expires (if the field value might differ from that
sent in a previous response for the same resource representation), and Cache-
Control (if the field value might differ from that sent in a previous response for the
same resource representation).

R166.2 The server MUST NOT return a byte range of “*” (indicating unknown) in the
Content-Range header.

A 207 status code indicates that the server partially completed (i.e., successfully processed)
a request that manage multiple resources. Multiple statuses are returned in the response,
one status for each resource in the request.

R167 207 Multi-Status - response status code MUST be used to inform the client that the
request, managing multiple resources, partially succeeded.

Note: See IETF RFC 4918 [Dusseault (2007)].

R167.1 The client MUST NOT repeat the request without modifications. This status code
refers to the message body and not header information.

R167.2 The server MUST return a Confirm Message entity in the message-body that
contains a status code for each resource along with detailed information related to the
resource

10.1.3 3xx Redirection

This category of response status codes indicates that further action needs to be taken by
the user agent in order to fulfill the request. The action required may be carried out by the
user agent without interaction with the user if and only if the method used in the second
request is GET or HEAD. A client must detect infinite redirection loops, since such loops
generate network traffic for each redirection. [Fielding et al (1999)]

For any 3xx response status code, the following rules apply:

R168 If the request method is GET or HEAD, the user agent MAY take further action without
interacting with the user.

R168.1 A client MUST detect infinite redirection loops.

R169 Cache expiration headers, Cache-Control: max-age and Expires headers, MAY be
used in responses for negative approach to cache validation to reduce the amount of
redirecting and error processing load on the server.

RESTful API Web Design

Page 122 of 163

R170 The server MAY return the Retry-After header to indicate the minimum time the user
agent is asked to wait before issuing the redirection request.

A 301 status code indicates that the RESTful Web API’s resource model has been
redesigned; as a result a new permanent URI has been assigned to the requested resource.

R171 301 Moved Permanently - response status code SHOULD be used to inform the client
that the resource was relocated.

R171.1 The server MUST use one of the methods below to return the URI(s) to the client.

R171.1.1 The server SHOULD specify the new URI in the response’s Location header.

R171.1.2 The server MAY specify multiple URI’s by returning a Confirm Message entity
that contains references to multiple resources.

R171.2 If the client receives the 301 status code in response to a request other than GET or
HEAD, the client MUST NOT automatically redirect the request unless it can be
confirmed by the user or validated by the application (if used as an API) (as this might
change the conditions under which the request was issued).

R171.3 Any future requests by the client to the relocated resource MUST use the new URI.

A 303 status code indicates that the response to the request can be found at a different URI
and should be retrieved using GET method on that resource.

R172 303 See Other - response status code SHOULD be used to refer the client to the
returned URI(s).

R172.1 The server MUST use one of the methods below to return the URI(s) to the client.

R172.1.1 The server SHOULD specify the different URI in the response’s Location header
for identifying a single resource.

R172.1.2 The server MAY specify multiple URI’s by returning a Confirm Message entity
that contains references to multiple instance resources.

A 304 status code indicates, for a conditional GET request, that while state information
exists for the resource, the client already has the current state information. By avoiding the
unnecessary return of a message-body (i.e. resource representation) bandwidth is
preserved.

R173 304 Not Modified - response status code SHOULD be used to indicate to the client that
it already has the current (most recent) resource representation.

R173.1 The server MUST NOT return a message-body in the response.

A 307 status code indicates that the requested resource temporarily resides under a
different URI. As a result, the client should resubmit the resource request to a temporary

RESTful API Web Design

Page 123 of 163

URI specified in the response. Use of the response status code should be reserved for
certain scenarios such as disaster recovery.

R174 307 Temporary Redirect - response status code MUST be used to inform the client to
resubmit the request to another URI.

R174.1 The server MUST use one of the methods below to return the URI(s) to the client.

R174.1.1 The server SHOULD specify the different URI in the response’s Location header
for identifying a single resource.

R174.1.2 The server MAY specify multiple URI’s by returning a Confirm Message entity
that contains references to multiple instance resources.

R174.2 If the client receives the 307 status code in response to a request other than GET or
HEAD, the client MUST NOT automatically redirect the request unless it can be
confirmed by the user or validated by the application (if used as an API) (as this might
change the conditions under which the request was issued).

10.1.4 4xx Client Error

This category of response status codes is intended for cases where an error condition is
generated due to an invalid request by the client. These status codes are applicable to any
request method.

For any 4xx response status code, the following rules apply:

R175 Cache expiration headers, Cache-Control: max-age and Expires headers, MAY be
used in responses for negative caching to reduce the amount of redirecting and error
processing load on the server.

A 400 status code indicates that the request could not be understood by the service due to
a syntax error in the client request. Some examples include:

The request URI query component may include a parameter that is undefined in the
specification.

The request resource representation in the entity-body may not conform to the resource
representation schema.

R176 400 Bad Request - response status code MUST be used to inform the client that the
request could not be understood by the server due to malformed syntax.

R176.1 The client SHOULD NOT repeat the request without modifications. This status code
refers to the message body and not header information. Please see status code 412
for indicating issues with header information.

R176.2 The server MUST return a Confirm Message entity in the message-body that
contains the detailed information related to the error.

RESTful API Web Design

Page 124 of 163

R176.3 If no other 4xx response code is appropriate, then the 400 response code
status SHOULD be used as a generic client-side error status [Richardson (2013].

A request to controller resource includes an HTTP method, specified in the request-line, and
a custom operator specified in the request-URI. The 400 status code will also be used to
indicate that the client tried to use a custom operator that is not allowed for the resource
identified by the request URI.
For any controller resource, the following rule applies:

R177 400 Bad Request – response status code MUST be used to inform the client that the
custom operator specified in the request is not allowed for the resource identified by the
request URI.

R177.1 The response MAY include an OAGi-Allow-CustomOperator header that lists the
valid custom operators for the requested resource.

A 401 status code indicates that the request lacked the proper authorization to operate on a
protected resource. For example, the client may have provided incorrect credentials.

R178 401 Unauthorized – response status code MUST be used to inform clients that the
authorization has been refused for credentials submitted in a request on a protected
resource (e.g. the request may have provided wrong credentials or none at all).
Note: If the server does not wish to make know why the request was not fulfilled, see rules
on response status code 404.

R178.1 The client MAY repeat the request with a new set of credentials.

R178.2 The server MUST return the WWW-Authenticate header.

R178.3 The server MAY return a Confirm Message entity that contains the detailed
information related to the error.

A 403 status code indicates that the request was understood but refused by the
server. RESTful Web APIs use 403 to enforce application-level permissions. For example, a
client may be authorized to interact with some, but not all resources of an API. [Masse
(2011)] The 403 response is also used in cases where the resource may only be accessible
at certain times or from certain IP addresses. [Richardson (2013)]

R179 403 Forbidden – response status code MUST be used to inform clients that attempted
to interact with a resource beyond its permitted scope.

Note: If the server does not wish to make know why the request was not fulfilled, see rules
on response status code 404.

R179.1 Authorization will not help, and the request SHOULD NOT be repeated.

Note: In other words, the response is not merely a case of insufficient client credentials
(for which a 401 response is designated); therefore, resubmitting the request for
authorization will not resolve the error.

RESTful API Web Design

Page 125 of 163

R179.2 If the server wishes to make known why the request was not fulfilled, it SHOULD
describe the reason for the refusal in a Confirm Message entity.

Note: If the server does not wish to make know why the request was not fulfilled, see
rules on response status code 404.

The 404 status code indicates that the request URI cannot be matched against a resource.
The resource may be represented by a combination of uri and header values and the server
did not find a match for what was requested.

R180 404 Not Found – response status code MAY be used to inform clients that the server
has not found anything matching the description of the resource that was requested.

R180.1 If the server does not wish to inform the client why the request was not fulfilled, then
status code 404 (Not Found) SHOULD be used.

The 405 status code indicates that the client tried to use an HTTP method that is not
allowed for the resource identified by the request URI.

R181 405 Method Not Allowed – response status code MUST be used to inform client that
the HTTP method specified in the request is not allowed for the resource identified by the
request URI.

R181.1 The response MUST include an Allow header that lists the valid HTTP methods for
the requested resource.

The 406 status code indicates that the API is not able to generate any of the client’s
preferred content characteristics for identified resource, according to the accept headers in
the request. For example, the client request Accept header specified the media type as
application/json, but the API can only represent the data as application/xml.

R182 406 Not Acceptable – response status code MUST be used to inform the client that the
resource identified by the request is not capable of generating a response entity with
acceptable content characteristics, according to the Accept headers.

Note: Servers are allowed to return responses that do not satisfy the conditions of the
Accept headers; this may be preferable in some cases. [Fielding et al (1999)]

R182.1 The response MAY return a Confirm Message entity that contains a list of available
content characteristics and the location(s) from which the user or user-agent may
choose the most appropriate.

The 408 status code indicates that the client did not produce a complete request in some
predetermined time (usually specified in the server’s configuration).

R183 408 Request Timeout – response status code MUST be used to inform the client that it
did not produce a request within the time that the server was prepared to wait.

R183.1 The client MAY repeat the request without modifications at any later time.

RESTful API Web Design

Page 126 of 163

R183.2 A controller resource MAY return a 408 status if the controller resource can determine
that it cannot respond within a reasonable timeframe. This is typically done at the
controller level if holding resources for an extended period of time could adversely
affect the system or other systems with which it is interacting

The 409 status code indicates that the request could not be completed due to a conflict with
the current state of the resource. Conflicts are most likely in response to a PUT request
where changes to a resource conflict with earlier changes (e.g. made by another client) to
that resource.

R184 409 Conflict – response status code MUST be used to inform the client that its request
could not be completed due to a conflict with the current state of the resource.

R184.1 The server MAY return a Confirm Message entity that contains the detailed
information related to the error that allows the user or user-agent to fix the problem.

The 410 status code indicates that the requested resource is no longer available at the
server and no forwarding address is available.

R185 410 Gone – response status code MUST be used to inform the client that the requested
resource is no longer available at the server and no forwarding address is available.

R185.1 The server SHOULD use this response code for APIs that have reached end of life,
have been permanently removed and for which there are no replacements.

The 412 status code indicates that one or more of the pre-conditions of the request
specified in the IF… headers were not satisfied and as a result the request was not fulfilled.

R186 412 Precondition Failed – response status code MUST be used to inform the client that
one or more of the pre-conditions specified in the request-header fields were not
satisfied (i.e. evaluated to false on the server) and prevented the request from being
fulfilled.

R186.1 The server MAY return a Confirm Message entity that contains the detailed
information related to the error.

The 413 status code indicates that the requested resource is larger than the server is willing
or able to process.

R187 413 Request Entity Too Large – response status code MUST be used to inform the
client that the request entity is larger than the server is willing or able to process.

Note: The status code also applies to GET requests, using pagination, if the $top
parameter value is greater than what the server is willing to process.

R187.1 The server MAY return a Confirm Message entity that contains the detailed
information related to the error.

R187.2 If the condition is temporary, the server SHOULD include a Retry-After header field
in the response that specifies when the client may try the request again.

RESTful API Web Design

Page 127 of 163

The 415 status code indicates that the API is not able to process the media type of the
client’s request, as indicted by the Content-Type entity header. For example, a client
request included an entity formatted as application/json, but the API can only process
data formatted as application/xml.

R188 415 Unsupported Media Type – response status code MUST be used to inform the
client that the entity of the request is in a format, as specified by the media type given in
the Content-Type header, not supported by the API.

R188.1 The response MAY return a Confirm Message entity that contains a list of available
content characteristics and the location(s) from which the user or user-agent may
choose the most appropriate.

The 416 status code indicates that the API is not able to satisfy the client request for a
partial resource, as indicated in the Range request header.

R189 416 Requested Range Not Satisfiable – response status code MUST be used to
inform the client that the partial resource expressed as a range in the Range header of
the request does not overlap with any of the ranges of the resource available at the
server.

R189.1 The server SHOULD specify the current length of the selected resource in the
response’s Content-Range header.

10.1.5 5xx Server Error

This category of response status codes is intended for cases where the server is aware that
is has erred or is incapable of performing the request. These status codes are applicable to
any request method.

For any 5xx response status code, the following rules apply:

R190 Except for responding to a HEAD request, the server SHOULD return a Confirm
Message entity that contains the detailed information related to the error, and whether it
is a temporary or permanent condition. [Fielding et al (1999)]

The 500 status code indicates that the server malfunctioned. The 500 error is never the
fault of the client; therefore, it is reasonable for the client to retry the exact same request
that triggered this response.

R191 500 Internal Server Error – response status code MUST be used to inform the client
that the server encountered an unexpected condition which prevented it from fulfilling the
request. This status code MUST be used for all errors that are not caused by the client,
except for when a 503 status is more appropriate.

R191.1 The client MAY retry the same request that triggered the response.

The 501 status code indicates that the server does not support the requested functionality.
If a server does not recognize the request method and does not support it for any resource,
then the 501 response status code is the appropriate response. An example includes:

RESTful API Web Design

Page 128 of 163

• The request URI query component may include a parameter that is defined in the
specification but not implemented by the server.

R192 501 Service Not Implemented – response status MUST be used to inform the client
that the server does not support the requested functionality.

Note: Requested functionality refers to a request’s method and query parameter(s).

The 503 status code indicates that the server is temporarily unavailable and should be
restored in the future.

R193 503 Service Unavailable – response status MUST be used to inform the client that the
server is currently unable to handle the request due to a temporary overloading or
maintenance of the server.

R193.1 If the server knows the length of the delay, it SHOULD be indicated in a Retry-After
header.

R193.2 The client MAY retry the request within the timeframe specified in the Retry-After
header. If the Retry-After header is not present, then it is not known when the
service will be available again.

 Confirm Message Request
The HTTP response status, alone, may be insufficient for conveying the results of processing
requests. For these situations, a Confirm Message will be used to provide application-
specific, detailed messages on the request’s processing result.

As described above, there are certain cases when a Confirm Message must, should or may
be returned. For example, a request resulting in a 400 response status will always yield a
Confirm Message.

In those cases where a Confirm Message is not required to be returned (yet can be made
available) to the client, the client may request a Confirm Message. The server response
must then either include a Confirm Message in the entity-body or include a link to the
Confirm Message entity that is related to the processing of the related request.

R194 A client MUST use the Prefer request header to request a Confirm Message from the
server.

Note: See the Message Header section for details on using the Prefer request header
for this purpose.

Prefer: /oagi/confirm-message

R195 In response to a client Confirm Message request (that is supported by the server per the
API specification), the server MUST produce a Confirm Message response.

Note: The API Specification should be used to indicate whether or not a Confirm
Message can be returned for a given request message.

RESTful API Web Design

Page 129 of 163

R196 For any server response for which there exists a Confirm Message that was not
returned in the response, the Confirm Message MUST include a link in the Link header
with the link relation (rel) set to “/oagi/confirm-message”.

Note: The rules that describe use of the HTTP response status specify whether a
Confirm Message must, should or may be supported.

R196.1 The persistence and availability (i.e. time interval) of the URI, specified in the Link
header, MUST be defined in the API Specification.

Link: <http://api.abc.com/hr/v1/Confirm Messages/abc102030xyz>; rel=”/oagi/confirm-message”; method=”GET”

 Confirm Message Response
The Confirm Message is a message definition of information that provides details on
request processing results (i.e., success, warning, error and informational messages). The
Confirm Message does not communicate the results of the client request, but rather the
results of processing the request. It is always communicated as an entity in the message-
body of the response.

R197 The Confirm Message MUST be used to communicate all application-specific success,
warning, error and informational messages intended for users or client developers.

The figure below shows the Confirm Message model. The Confirm Message was designed to
support the communication of response messages and status at both the request-level and
at the request resource-level. This design supports resource-specific messages in batch and
bulk request scenarios. The actual success, warning, error and informational messages may
be communicated with the Message construct at two levels: the Confirm Message and the
Resource Message. At the Confirm Message, the Message provides overall results for the
request; at Resource Message, the Message provides results for the individual resource(s)
being managed in the request.

RESTful API Web Design

Page 130 of 163

The Confirm Message contains the processing results for the corresponding request. A
request may have its processing reported as: succeeded, partially failed, or failed. The
properties of the Confirm Message are defined, below.

messageID - An identifier for the instance of the confirm message. The identifier must be
globally unique for storage and use (e.g. in a URI of a confirm message instance exposed in
a Link Header).

messageDateTime - The date & time that the confirm message instance was created.

requestID - An identifier for an instance of a processing job (e.g. a processing job that is
servicing a bulk or batch request).

requestResultStatusCode – The processing result status code for the request.

requestProcessingStatusCode - Status of the processing of the request message.

links – A link array that supports the return of one or more links associated with the
request and/or Confirm Message.

The Resource Message contains the resource-specific processing results for resources
being managed in the request. A resource may have its processing reported as: succeeded
or failed. It must be used to represent resource-specific messages. In the case of a
request managing multiple resources and resource-specific messages are to be returned,
then this array will contain one object for each such resource of the request. The properties
of the Resource Message are defined below.

resourceID – An identifier for the instance of the resource message. It must be unique
within the scope of the Confirm Message instance.

resourceResultStatusCode – The result status code for a resource in a request.

links – A link array that supports the return of one or more links associated with the
resource in a request.

Figure 11: Confirm Message Logical Model

RESTful API Web Design

Page 131 of 163

The Message contains additional information associated with either the request (associated
with the Confirm Message) and/or resources being managed in the request (associated
with the Resource Message). Most often there will be a single instance for an associated
request or resource, but this structure allows for more than one if needed, for example, if
multiple errors exist for a single resource. The properties of the Message are defined
below.

messageCode – A code that is associated with the content of the message.

messagetypeCode – Process Message instances may be of type: success, warning, error,
or info.

message – The content or description of the message.

resourcePath – A path expression used to specify the part of a resource representation
that corresponds to the message.

For any Confirm Message instance, the following rules apply:

R198 The properties MUST adhere to the definitions and multiplicity constraints documented
in the Confirm Message logical model.

R199 The messageID value MUST be globally unique for storage and use (e.g. in a URI of a
Confirm Message instance exposed in a Link Header).

R279 The processID value MUST be globally unique for storage and use (e.g. in a URI of the
processing status for a processing job).

R202 The requestResultStatusCode value MUST be limited to an element of the value
domain:
“succeeded”,
“partiallyFailed”,
“failed”.

R202.1 The succeeded value MUST be used to indicate that the processing of the request
was successful; the management of all instance resources in the request was
successful.

R202.2 The partiallyFailed value MUST be used to indicate that the processing of the
request partially failed; partiallyFailed requests are limited to cases where the
management of at least one of multiple instance resources in the request was
unsuccessful (e.g. bulk operations).

R202.3 The failed value MUST be used to indicate that the processing of the request failed;
the management of all instance resources in the request was unsuccessful.

Note: For bulk operations, a given API Specification may specify what constitutes a
failed request. In some cases, a processing error on a single resource instance may
warrant the request as failed; in other cases, processing errors on all instances
resources may warrant the request as failed.

RESTful API Web Design

Page 132 of 163

R204 The requestProcessingStatusCode value MUST be limited to an element of the value
domain:
“received”,
“validated”,
“started”,
“completed”.

Note: A request that is in a “received”, “validated” and “started” state is considered to be
in-progress.

R204.1 The received value MUST be used to indicate that the request has been received by
the server but has not been processed.

R204.2 The validated value MUST be used to indicate that the request has been validated
against applicable business rules but has not been completed processing.

R204.3 The completed value MUST be used to indicate that the request has completed
processing.

R204.4 The started value MUST be used to indicate that the request has begun processing (i.e.
that the request is being executed).

R205 The Resource Message.resourceID value MUST be unique within the scope of the
Confirm Message instance.

R206 The Resource Message.resourceResultStatusCode value MUST be limited to an
element of the value domain:
“succeeded”,
“failed”.

R206.1 The succeeded value MUST be used to indicate that the processing of the instance
resource was successful.

R206.2 The failed value MUST be used to indicate that the processing of the instance
resource failed.

R280 The Message.resourcePath value MUST be written in one of the following expression
languages:
“xPath”,
“jPath”.

R280.1 The xPath value MUST adhere to the format and value domains as specified in
W3C’s XML Path Language.

Note: See [Berglund et al. (2010)].

RESTful API Web Design

Page 133 of 163

R280.2 The jPath value MUST adhere to the format and value domains as specified by
Stefan Goessner.

Note: See [Goessner (2007)].

R208 The Message.messageTypeCode value MUST be limited to an element of the value
domain:
“success”,
“warning”,
“error”,
“info”.

R208.1 The success value MUST be used to identify the Message as a success message.

R208.2 The warning value MUST be used to identify the Message as a warning message.

R208.3 The error value MUST be used to identify the Message as an error message.

R208.4 The info value MUST be used to identify the Message as an informational message

In the following example the Confirm Message communicates the result of a request that
failed upon validation.

{

 "confirmMessage": {

 "messageID": "69fe0381-ed80-45ef-b4c7-41e2db362b91",

 "messageDateTime": "2019-03-11T15:30:00-06:00",

 "requestProcessingStatusCode": "validated",

 "requestResultStatusCode": "failed",

 "messages": [

 {

 "messageCode": "10003",

 "messageTypeCode": "error",

 "message": "Unexpected parameter, 'select' in the URI Query Component."

 }

]

 }

}

In the following example the Confirm Message communicates the result of a partially failed
where the first resource in the request processed successfully and the second resource in
the request failed to process.

RESTful API Web Design

Page 134 of 163

{

 "confirmMessage": {

 "messageID": "69fe0381-ed80-45ef-b4c7-41e2db362b91",

 "messageDateTime": "2019-03-11T15:30:00-06:00",

 "requestProcessingStatusCode": "completed",

 "requestResultStatusCode": "partiallyFailed",

 "messages": [

 {

 "messageCode": "PREVIEW_CALC_ERRORS",

 "messageTypeCode": "error",

 "message": "Error(s) occurred while previewing the payrun."

 }

],

 "resourceMessages": [

 {

 "resourceMessageID": "1234",

 "resourceResultStatusCode": "failed",

 "messages": [{

 "messageCode": "PREVIEW_CALC_ERROR",

 "message": "An error has occurred in the payroll calculation. Please
contact your Payroll support team for assistance. (Message ID 068)",

 "resourcePath": "$.employees[?(@.associateOID='AOID_1')]"

 }

]

 },{

 "resourceMessageID": "2345",

 "resourceResultStatusCode": "succeeded",

 "messages": [{

 "messageCode": "PREVIEW_SUCCESS",

 "message": "Employee processed successfully",

 "resourcePath": "$.employees[?(@.associateOID='AOID_2')]"

 }

]

 }

]

 }

}

RESTful API Web Design

Page 135 of 163

The following table shows the relationship of code values between Confirm
Message.requestResultStatusCode, the Resource
Message.resourceResultStatusCode and the Message. messageTypeCode (for the
Confirm Message and the Resource Message). A requestResultStatusCode of
“succeeded” indicates that all of the resources in the request “succeeded”. A
requestResultStatusCode of “partiallyFailed” indicates that some of the resources in the
request “succeeded” and some of the resources in the request “failed”. A
requestResultStatusCode of “failed” indicates that all of the resources in the request
“failed”.

Confirm Message Status Confirm Message Resource Message

requestResult
StatusCode

Resource Message.
resourceResult

StatusCode

Message.
messageTypeCode

Message.
messageTypeCode

succeeded succeeded success,
warning,

info

success,
warning,

info

partiallyFailed succeeded success,
warning,

info

success,
warning,

info

failed success,
warning,
error, info

success,
warning,
error, info

failed failed success,
warning,
error, info

success,
warning,
error, info

For any Confirm Message instance, the following rules apply:

R210 If the Confirm Message.requestResultStatusCode value is succeeded, the
Resource Message.resourceResultStatusCode MUST be limited to the value domain:
“succeeded”.

R211 If the Confirm Message.requestResultStatusCode value is partiallyFailed, the
Resource Message.resourceResultStatusCode MUST be limited to the value domain:
“succeeded”,
“failed”.

R212 If the Confirm Message.requestResultStatusCode value is failed, the Resource
Message.resourceResultStatusCode MUST be limited to the value domain:
“failed”.

Table 11: Types of Messages by Request Processing Status

RESTful API Web Design

Page 136 of 163

R213 If the Confirm Message.requestResultStatusCode value is succeeded where all
Resource Message.resourceResultStatusCode values are succeeded, then the
Confirm Message.Message.messageTypeCode MUST be limited to the value domain:
“success”,
“warning”,
“info”.

For any Resource Message instance, the following rule applies:

R213.1 The Confirm Message.Resource Message.Message.messageTypeCode MUST
be limited to the value domain:
“success”,
“warning”,
“info”.

R214 If the Confirm Message.requestResultStatusCode value is partiallyFailed where at
least one Resource Message.resourceResultStatusCode value is succeeded and at
least one Resource Message.resourceResultStatusCode value is failed, then the
Confirm Message.Message.messageTypeCode MUST be limited to the value domain:
“success”,
“warning”,
“info”.

For any Resource Message instance, the following rule applies:

R214.1 If Resource Message.resourceResultStatusCode value is succeeded, then the
Confirm Message.Resource Message Message.messageTypeCode MUST be
limited to the value domain:
“success”,
“warning”,
“info”.

R214.2 If the Resource Message.resourceResultStatusCode value is failed, then the
Confirm Message.Resource Message.Message.messageTypeCode MUST be
limited to the value domain:
“success”,
“warning”,
“error”,
“info”.

Note: In the case of failed instance resource processing, success messages may still
be communicated. For example, the instance resource representation may have
successfully validated against its schema.

RESTful API Web Design

Page 137 of 163

R215 If the Confirm Message.requestResultStatusCode value is failed where all Resource
Message.resourceResultStatusCode values are failed, then the Confirm
Message.Message.messageTypeCode MUST be limited to the value domain:
“success”,
“warning”,
“error”,
“info”.

For any Resource Message instance, the following rule applies:

R215.1 The Confirm Message.Resource Message.Message.messageTypeCode MUST
be limited to the value domain:
“success”,
“warning”,
“error”,
“info”.

The following table relates the Confirm Message.requestResultStatusCode and the
Confirm Message.Resource Message.resourceResultStatusCode to the HTTP
Response Status Codes.

Confirm Message Status HTTP Response Status
for Request managing a

requestResultStatusCode Single Instance
Resource

Multiple Instance
Resources

succeeded 2xx 2xx

partiallyFailed -- 207 Multi-Status

failed 3xx, 4xx, 5xx 3xx, 4xx, 5xx

For any Confirm Message instance in response to a request managing a single
instance resource, the following rules apply:

R216 The Confirm Message.requestResultStatusCode value of succeeded MUST be used
in conjunction with a 2xx HTTP Response Status Code.

R217 The Confirm Message.requestResultStatusCode value of failed MUST be used in
conjunction with a 4xx or 5xx HTTP Response Status Code.

For any Confirm Message instance in response to a request managing multiple
instance resources, the following rules apply:

Table 12: Confirm Message Status to HTTP Response Status Map

RESTful API Web Design

Page 138 of 163

R218 The Confirm Message.requestResultStatusCode value of succeeded MUST be used
in conjunction with a 2xx HTTP Response Status Code.

R219 The Confirm Message.requestResultStatusCode value of partiallyFailed MUST be
used in conjunction with a 207 Multi-Status HTTP Response Status Code.

R220 The Confirm Message.requestStatusCode value of failed MUST be used in
conjunction with a 3xx, 4xx or 5xx HTTP Response Status Code.

RESTful API Web Design

Page 139 of 163

11 Patterns for Asynchronous Communication
Case exists, for example a request for large bulk operation, requiring substantial server
processing that prohibit a synchronous response. In these cases, the results of the request
must be communicated asynchronously.

Three patterns are provided to communicate the results in an asynchronous manner. In the
first pattern the Service Provider pushes the response to the client. In the second pattern
the Service Consumer pulls the response from the server. In the third approach the Service
Consumer polls the processing status of the request and pulls the response.

Factors for consideration in the selection of a pattern include:

• The application architecture of the service provider where,
• In the push pattern, the service provider has responsibility for monitoring request

processing and communicating the results upon processing completion.
• In the polling pattern, the service consumer has responsibility for monitoring request

processing and retrieving the results upon processing completion.
• The applicability of the interactions patterns for the use cases, supported by the API.

Note: All the asynchronous communications patterns may leverage the OAGi-Originator-
ID header to facilitate routing of the message instances participating in the collaboration.

For any request, the following rules apply:

R272 The Service Provider, upon assessing a request and/or Service Provider
constraints (e.g. capacity), MAY respond to the request asynchronously.

Note: Even though a Service Consumer does not specify a preference for
an asynchronous response, the Service Provider may elect to respond to
the request asynchronously.

For any request to which a service consumer prefers an asynchronous response,
the following rules apply:

R221 The Service Consumer MUST include a Prefer header with a field value of “respond-
async” in the request.

Note: This informs the service provider of the service consumer's preference for an
asynchronously response to the request.

R221.1 The Service Consumer MAY include a Prefer header with a field value of “wait =
time”.

Note: The “wait = time” expression acts as a condition for an asynchronous
response. If the server cannot generate a response within the wait time specified,
then the response must be returned asynchronously.

RESTful API Web Design

Page 140 of 163

 A pattern for Service Provider Push
This asynchronous communication pattern, allows Service Consumer to receive an
asynchronous response that is pushed from the Service Provider.

Application of this pattern may be limited to internal only. External use presents security
management concerns, specifically the Service Consumer would be required to authenticate
and authorize the Service Provider callback.

Use of this pattern must use the following systems interaction, described below.

1. The Service Consumer sends a request to a Service Provider.

The request must include the following headers:

Figure 12: Asynchronous Service Provider Push Response Pattern

RESTful API Web Design

Page 141 of 163

• OAGi-MessageID header; the header identifies the request.

• Prefer header with a field value of “respond-async”; the header
informs the Service Provider to respond asynchronously.

• Link header with a relation-type (i.e., “rel”) value of
“oagi/callback”; the header specifies the URI that the Service
Provider may use to push the request result and/or request result
status.

Note: See the Request Headers section of the document for details on
the Prefer and Link headers and see the Custom Headers section for
details on the OAGi-MessageID headers.

2. For a successful request, the Service Provider must return a 202
Accepted status code in the response. For unsuccessful requests, see
the Confirmation Management section for a list of possible error status
codes.

3. Once the Service Consumer’s request has completed processing by the
Service Provider, the Service Provider, using the call back URI, sends a
POST request to the Service Consumer that includes the request result
and may include request result status of the resource management
operation.

The request must include the following headers:

• OAGi-CorrelationID header; the header identifies the original
request to which the current request is related.

The request may include the following headers:

• OAGi-MessageID header; the header identifies the request.

4. Upon a successful request, the Server Consumer must return a 201
Created status code. For unsuccessful requests, see the Confirmation
Management section for a list of possible error status codes.

5. Service Consumer is responsible for ensuring that the OAGi-
CorrelationID value matches the originating OAGi-
MessageID value.

6. Alternative to Steps 3-5: Once the Service Consumer’s request has
completed processing by the Service Provider, the Service Provider, using
the call back URI, sends a POST request to the Service Consumer that
includes only request result status.

The request must include the following headers:

• OAGi-CorrelationID header; the header identifies the original
request to which the current message is related.

• SOR header; the header identifies the receiver of the request.

• Link header with a relation-type (i.e., “rel”) value of
“oagi/request-result”; the header specifies the URI that the Service
Consumer may use to pull the request result.

RESTful API Web Design

Page 142 of 163

The request may include the following headers:

• OAGi-MessageID header; the header identifies the request.

7. Upon a successful request, the Server Consumer must return a 200 OK
status code. For unsuccessful requests, see the Confirmation
Management section for a list of possible error status codes.

8. Service Consumer is responsible for ensuring that the OAGi-
CorrelationID value matches the originating OAGi-MessageID value

For any request in the asynchronous pattern for service provider push, the
following rules apply:

R282 The service consumer request MUST include an OAGi-MessageID header” that
specifies the request identifier.

R222 The service consumer request MUST include a Link header with a relation-type value
of “/oagi/callback” that specifies the URI for the callback resource for communicating
request results and/or request results status.

R222.1 The persistence and availability (i.e. time interval) of the URI, specified in the Link
header, MUST be defined in the API Specification.

R223 The service provider processing the request MUST return a 202 Accepted status.

R224 The service provider, upon request processing completion, MUST call back the service
consumer including the request result and/or request result status using a POST request
to the URI specified in the Link header of the initial request.

R224.1 The request result MUST include a resource representation (for output data).

R224.2 The request result status, if included, MUST be represented with a Confirm
Message.

R224.3 If the callback request returns only the request result status and operation results are
available, then the service provider MUST include a Link header with a relation-type
value of “/oagi/request-result” that specifies the URI from which the service
consumer can retrieve the request result.

R225 The service consumer, upon successfully processing the request result and/or request
result status, returned in the callback request, MUST return a 201 Created status.

 A Pattern for Service Consumer Pull
This asynchronous communication pattern, allows clients to pull an asynchronous response
from the server.

RESTful API Web Design

Page 143 of 163

This pattern must use the following systems interaction, described below.

1. The Service Consumer’s first request, that specifies the resource
management request, must include a Prefer header with a field value
of “respond-async” to inform the Service Provider of the Service
Consumer’s preference for an asynchronous response. The Prefer
header and field value informs the Service Provider to respond
asynchronously.

Figure 13: Asynchronous Service Consumer Pull Response Pattern

RESTful API Web Design

Page 144 of 163

Note: See the Request Headers section of the document for details on
the Prefer header.

2. Upon a successful request, the Service Provider must return a 202
Accepted status, a Location header and a Retry-After header with a
field value indicating the minimum time the Service Consumer should
wait before attempting to retrieve the result of the request. The
Location header specifies the URI that the Service Consumer may use
to pull the request result. For unsuccessful requests, see the
Confirmation Management section for a list of possible error status
codes.

3. Once the time constraint in the Retry-After header has been satisfied,
the Service Consumer sends a GET request using the URI specified in
the Location header returned in the response to the initial request.

4. If the resource management operation of the initial request has not
completed processing (i.e., and is still in process), the Service Provider
must issue a 200 OK status and a Retry-After header with a field
value indicating the minimum time the Service Consumer should wait
before another attempt to retrieve the result of the request. The
Service Provider should include a Confirm Message entity with
information on the operation status.

5. Once the time constraint in the Retry-After header has been satisfied,
the Service Consumer sends another GET request using the URI
specified in the Location header returned in the response to the initial
request.

6. Upon a successful request, the Server Consumer must return a 200
OK status code that includes the results of the initial resource
management request. For unsuccessful requests, see the Confirmation
Management section for a list of possible error status codes.

For any initial request in the asynchronous pattern for service consumer pull, the
following rules apply:

R227 The service provider processing the request MUST return a 202 Accepted status code
with a Location header that specifies the URI for the request result and a Retry-After
header indicating when the client may poll the service provider.

R227.1 The persistence and availability (i.e. time interval) of the URI, specified in the
Location header, MUST be defined in the API Specification.

For any GET request, pulling the request result in the asynchronous pattern for
service consumer pull, the following rules apply:

R228 The service consumer request MUST use the URI specified in the Location header of
the response to the initial request.

R229 If the status of the request is in-progress, then the service provider MUST return a 200
OK status code with a Retry-After header indicating when the client may poll the service
provide.

RESTful API Web Design

Page 145 of 163

R229.1 The response SHOULD include a Confirm Message entity describing the operation
status.

R229.2 The response MUST include Retry-After header indicating when the client may pull
the request result from server (i.e., service provider).

R230 The request result MAY include a resource representation (for output data) or a Confirm
Message (for operation results status).

 A Pattern for Service Consumer Polling and Pull
This asynchronous communication pattern allows service consumers to poll request status
and pulls an asynchronous response from the service provider.

This pattern must use the following systems interaction, described below.

RESTful API Web Design

Page 146 of 163

Figure 14: Asynchronous Service Consumer Polling and Pull Response Pattern

1. The Service Consumer’s first request, that specifies the resource
management request, must include a Prefer header with a field value
of “respond-async”. The Prefer header and field value informs the
Service Provider to respond asynchronously.

Note: See the Request Headers section of the document for details on
the Prefer header.

RESTful API Web Design

Page 147 of 163

2. For a successful request, the Service Provider must return a 202
Accepted status, a Link header with a relation-type value of
“/oagi/processing-status” and a Retry-After header with a field
value indicating the minimum time the Service Consumer should wait
before attempting to retrieve the processing status of the request.
The Link header specifies the URI that the Service Consumer may use
to query the processing status of the request. For unsuccessful
requests, see the Confirmation Management section for a list of
possible error status codes.

3. Once the time constraint in the Retry-After header has been satisfied,
the Service Consumer sends a GET request using the URI specified in
the Link header returned in the response to the initial request.

4. Upon the successful query for request processing status, the Service
Provider checks the request processing status and determines that the
request is in-progress. The Service Provider must issue a 200 OK
response and should include a Confirm Message entity with
information on the request status. Optionally, a Retry-After header
with a field value indicating the minimum time the Service Consumer
should wait before making another attempt to retrieve the request
processing status.

5. Upon the successful request for request processing status, the Service
Provider checks the request processing status and determines that the
request has completed. The Service Provider must issue a 303 See
Other response with a Location header that provides a URI for the
request result.

6. The Service Consumer sends a GET request using the URI specified in
the Location returned in the previous response.

7. Upon a successful request, the Server Provider must return a 200 OK
status code that includes the results of the initial resource
management request. For unsuccessful requests, see the Confirmation
Management section for a list of possible error status codes.

For any initial request in the asynchronous pattern for service consumer polling
and pull, the following rules apply:

R232 The service provider processing the request MUST return a 202 Accepted status code
with a Link header with a relation-type value of “/oagi/processing-status” that
specifies the URI for the request processing status and a Retry-After header indicating
when the client may poll the service provider.

R232.1 The persistence and availability (i.e. time interval) of the URI, specified in the Link
header, MUST be defined in the API Specification.

For any GET request, polling request processing status in the asynchronous
pattern for service consumer polling and pull, the following rules apply:

R233 The service consumer request MUST use the URI specified in the Link header of the
response to the initial request.

RESTful API Web Design

Page 148 of 163

R234 If the processing status of the request is in-progress, then the service provider MUST
return a 200 OK status code with a Retry-After header indicating when the client may
poll the service provider.

R235 If the processing status of the request is completed, then the service provider MUST
issue a 303 See Other response with a Location header that provides a URI for the
request result.

R235.1 The availability (time interval) of the URI, specified in the Location header, MUST be
defined in the API Specification.

R287 Request processing status MUST include a Confirm Message (for request processing
status).

For any GET request, pulling the request result in the asynchronous pattern for
service consumer polling and pull, the following rules apply:

R236 The service consumer request MUST use the URI specified in the Location header of
the response that indicating the operation status as completed.

R237 The request result MAY include a resource representation (for output data) and MAY
include a Confirm Message (for request result status).

RESTful API Web Design

Page 149 of 163

12 Patterns for Event Notifications
This section describes communication patterns in support of event notifications. Event
notifications are message instances that are published by Service Providers and consumed
by interested observers, the Service Consumers. Event notifications may be provided in
two forms:

• Limited, where the content of the message includes the event identifier and other key
metadata elements such as the event creation date.

• Full, where the content of the message includes not only the event identifier and all
metadata elements but also the event’s detailed data.

Consider, for example, when an employee gets paid. A limited event notification says that
an employee has gotten paid; this is a pay event. On the other hand, a full event
notification provides information about the pay event including the gross pay, deductions,
and net pay.

A single pattern is described for the Service Consumer to retrieve event notification
messages. The pattern will leverage the server-push mechanism of long-polling.

 A Pattern for Long Polling
This event notifications pattern, allows clients to receive event notifications from the server.
In the standard HTTP model, a server can neither initiate a connection with a client nor send
an unrequested response to a client. Therefore, in this model, a server cannot push
asynchronous event notifications to clients requiring clients to poll the server for new event
notifications (i.e. the “short polling” mechanism). The client polling frequency depends on
the latency that the client can tolerate in retrieving the event notifications. Client “short
polling” incurs additional processing and network bandwidth consumption (due to the
inefficiency of polling request and response pairs when no new event notifications are
available). The long polling server-push mechanism was developed to address the problems
of server-client event notification latency and use of processing and network resources.
[Loreto et al. (2011)]

Loreto [Loreto et al. (2011)] defines long polling as when “the server attempts to “hold
open” (not immediately reply to) each HTTP request, responding only when there are events
to deliver. In this way, there is always a pending request to which the server can reply for
delivering events as they occur, thereby minimizing the latency in message delivery.”

This pattern must use the following systems interaction, described below.

RESTful API Web Design

Page 150 of 163

1. The Service Consumer’s GET request for Event Notifications must
include a Prefer header with a field value of “/oagi/long-polling”.
The Prefer header and field value informs the Service Provider to use
the long-polling push mechanism.

Note: See the Request Headers section of the document for details on
the Prefer header.

2. If Event Notifications are available at the Service Provider (for the
respective subscriber), the Service Provider must return a 200 OK
status along with the event notifications in the message entity-body.

3. If no event notifications become available at the Service Provider (for
the respective subscriber) before a designate timeout, the Service
Provider must return a 200 OK status along with a Confirm Message
in the message entity-body describing the timeout condition. For
unsuccessful requests, see the Confirmation Management section for a
list of possible error status codes.

Figure 15: Event Notifications Long Polling Pattern

RESTful API Web Design

Page 151 of 163

For any initial GET request in the event notifications long-polling pattern, the
following rules apply:

R239 The service consumer request MUST include a Prefer header with a value of
“/oagi/long-polling” that informs the server to use the long-polling push mechanism.

R240 The service provider processing the request MUST return any Event Notifications for the
respective subscriber that are available or become available before timeout (if any) has
occurred.

R240.1 The response MUST include a resource representation (for Event Notifications) or a
Confirm Message (for request result status).

Best practice always suppresses caching in a long poll response [Loreto et al. (2011)].

For any response in the event notifications long-polling pattern, the following rule
applies:

R241 The service provider MUST suppress caching.

Note: Refer to the Message Headers subsection on Caching.

RESTful API Web Design

Page 152 of 163

13 Special Cases
This section addresses special cases such as alternative approaches and unique use cases.

 Media Type Selection
Media type selection should be specified in a request through the use of
HTTP's Accept header. However, cases exist where user agents may not be capable of
setting an Accept header (e.g. a browser implementation) and requires the use of simple
links that support media type selection by way of an accept query parameter that emulates
the Accept header.

R247 Media type selection MAY be specified by an accept query parameter.

http://api.abc.com/hr/v1/associates?accept=application/pdf

 Multipart Message Instances
The entity-body of a message may contain more than one body-part. In the case of the
multipart message, the Content-Type message header must specify the message with the
multipart media type and subtype. Each body-part within the message has its own HTTP
and MIME headers: Content-Type and Content-Disposition.

For any multipart message request or response, the following rules apply:

R248 The Content-Type entity header MUST be included in the message's message-
headers.

R248.1 The type/subtype field value MUST be limited to an element of the value domain:
“multipart/mixed”
 Note: See RFC 2046 [Freed (1996)]
“multipart/related”
 Note: See RFC 2387 [Levinson (1998)]
“multipart/form-data”
 Note: See RFC 7578 [Masinter (2015)]

R248.1.1 The multipart/mixed field value MUST be used to indicate that the body-parts
are independent and need to be bundled in a particular order. [Freed (1996)]

R248.1.2 The multipart/related field value MUST be used to indicate that the body-parts
are inter-related and form part of an aggregate whole (i.e., the body-parts only
make sense in the aggregate). [Levinson (1998)]

R248.1.3 The multipart/form-data field value MUST be used to indicate that the body-parts
encode name-value pairs where the values contain data of arbitrary media
types. [Masinter (2015)] [Allamaraju et al. (2010)]

R248.2 The boundary parameter value MUST be assigned a value.

RESTful API Web Design

Page 153 of 163

R248.2.1 The boundary parameter value SHOULD adhere to the format and value
domains as specified in IETF’s RFC 2046.

Note: See RFC 2046 [Freed (1996)]; the RFC recommends that that the
boundary parameter should be enclosed in quotes.

The following example illustrates a multipart message header.

Content-Type: multipart/mixed; boundary=gc0p4Jq0M2Yt08jU534c0p

 R248.3 A body-part MUST be preceded by a boundary delimiter, composed of two hyphen
characters followed by the boundary parameter value.

"--" boundary

R248.3.1 The boundary delimiter SHOULD adhere to the format and value domains as
specified in IETF’s RFC 2046.

R248.3.2 The boundary delimiter MUST occur at the beginning of a line following a CRLF
(line break).

Note: See RFC 2046 [Freed (1996)]

R248.3.3 The boundary delimiter MUST be terminated by either another CRLF (line break)
and the body-part headers or by two CRLFs (i.e., there are no headers).

R248.4 A body-part MUST consist of a header area, a blank line, and a body area.

Note: See RFC 2046 [Freed (1996)]

R248.5 The last body-part MUST be succeeded by a close boundary delimiter, composed of
two hyphen characters followed by the boundary parameter value followed by two
hyphen characters.

“-- boundary -- “

R248.6 The Content-Type entity header MAY be included the message body-part header
area.

Note: See RFC 2046 [Freed (1996)]

R248.6.1 The Content-Type header MUST be used to describe the media type, subtype
and masking of a body-part.
“Content-Type” “: ” type“/”subtype [";" "masked" "=" "true" | "false"]

R248.6.2 In the absence of the Content-Type header, the content type value MUST default
to “text/plain”.

RESTful API Web Design

Page 154 of 163

R271 The Content-Disposition entity header MAY be included the message body-part header
area.
“Content-Disposition” “: ” type [";" disposition-parameter]

Note: If the message body-part Content-Type is “multipart/form” then the Content-
Disposition entity header must be included in the message body-part header area. See
RFC 7578 [Masinter (2015)]

R271.1 The type [";" disposition-parameter] field value MUST adhere to the format and
value domain as specified in IETF's RFC 7578.

R271.1.1 The Content-Disposition header MUST contain an additional parameter of
"name" where the value of this parameter is the name of the name-value pair,
communicated in the body-part.

R271.1.2 If the value of the name-value pair, communicated in the body-part, is the content
of a file, then the name for the file SHOULD be provided using the "filename"
parameter.

RESTful API Web Design

Page 155 of 163

The following example illustrates a message body-part with multipart/mixed content.

--gc0p4Jq0M2Yt08jU534c0p
Content-Type: application/json
{
…json content
}
--gc0p4Jq0M2Yt08jU534c0p
Content-Disposition: attachment; filename="att-1111-1.png"
Content-Type: image/jpeg
… encoded content
--gc0p4Jq0M2Yt08jU534c0p--

The following example illustrates a message body-part with multipart/form-data content.

--aCZ51y
Content-Disposition: form-data; name="field1"
Content-Type: text/plain;charset=UTF-8
... text content
--aCZ51y--

RESTful API Web Design

Page 156 of 163

14 Message Body Representations

 Metadata Representation
For any response message metadata, the following rule applies:

R242 The metadata MUST be represented in an object class, named paginationResponse,
in the message-body.

The example, below, illustrates the GET response metadata supporting pagination.

HTTP/1.1 200 OK
Content-Type: application/json
{

“paginationResponse”: {
 “startSequenceNumber” : 1,
 “returnedNumber” : 10,
 “totalNumber” : 25,
 “completeIndicator” : false
 “resourceSetID” : “7001”
 }
 {resourceRepresentation}
}

 Resource Representations
For any resource representation of the resource model, the following rule applies:

R243 A resource representation MAY contain a link to itself with the link relation (rel) set
to self.

For any collection resource representation, the following rule applies:

R244 A collection (array of items) resource representation MUST be contained within an
anonymous root object.

Note: Anonymous refers to an unnamed object.

In the example, below, the associates collection is contained in an anonymous object. The
associate instance resource shows the link to self.

{

 “associates” : [{
 “associateID” : {
 “idValue” : “12121212”
 }
 “links” : [{
 “href” : “hr/v1/associates/12121212”,
 “rel” : “self”
 }]
 …
 }]

RESTful API Web Design

Page 157 of 163

}

Resource identifiers should be included in the resource representation when the resource
representation is included in the request or response (e.g. PUT request).

RESTful API Web Design

Page 158 of 163

15 References

[Allamaraju et al. (2010)]
Allamaraju, S. “RESTful Web Services Cookbook”, Oreilly Media, Sebastopol, CA, March
2010.
https://tools.ietf.org/html/rfc7231

[Barth (2011)]
Barth, A. “HTTP State Management Mechanism”, RFC 6265, IETF, April 2011.
http://tools.ietf.org/html/rfc6265

[Berglund et al. (2010)]
Berglund, A., Boag, S., Chamberlain, D., Fernández, M., Kay, M., Robie, J., Siméon, J. “XML
Path Language (Xpath) 2.0”, W3C Recommendation, December 2010.
http://www.w3.org/TR/xpath20/

[Berners-Lee (2005)]
Berners-Lee, Tim., Fielding, R., Masinter, L. “Uniform Resource Identifier (URI): Generic
Syntax”, RFC 3986, IETF, January 2005.
http://www.ietf.org/rfc/rfc3986.txt

[Braden, R. (1989)]
Braden, R. “Requirements for Internet Hosts – Application and Support”, RFC 1123, IETF,
October 1989.
http://tools.ietf.org/html/rfc1123

[Bryant (2009)]
Bryant, Peter. “REST-ful URI design”, 2PartsMagic Blog. April, 2009.
http://redrata.com/restful-uri-design/

[Daigneau (2012)]
Daigneau, Robert. Service Design Patterns, Fundamental Design Solutions for SOAP/WSDL
and RESTful Web Services, Addison-Wesley, 2012.

[Dusseault (2007)]
Dusseault, L. “HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV)”,
RFC 4918, IETF, June 2007.
https://tools.ietf.org/html/rfc4918

[Dusseault et al. (2010)]
Dusseault, L., Snell, J. “PATCH Method for HTTP”, RFC 5789, IETF, March 2010.
https://tools.ietf.org/html/rfc5789

https://tools.ietf.org/html/rfc7231
http://tools.ietf.org/html/rfc6265
http://www.w3.org/TR/xpath20/
http://www.ietf.org/rfc/rfc3986.txt
http://tools.ietf.org/html/rfc1123
http://redrata.com/restful-uri-design/
https://tools.ietf.org/html/rfc4918
https://tools.ietf.org/html/rfc5789

RESTful API Web Design

Page 159 of 163

[Erl et al. (2012)]
Erl, T., Carlyle, B., Pautasso, C. Balasubramanian, R., SOA with REST, Prentice Hall, 2012.

[Fielding et al. (1999)]
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.
“Hypertext Transfer Protocol – HTTP/1.1”, RFC 2616, IETF, June 1999.
http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://tools.ietf.org/html/rfc2616

[Fielding (2000)]
Fielding, Roy Thomas. Architectural Styles and the Design of Network-based Software
Architectures, Doctoral dissertation, University of California, Irvine, 2000.
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[Fielding et al. (2014)]
Fielding, R., Reschke, J. “Hypertext Transfer Protocol – HTTP/1.1: Semantics and Content”,
RFC 7231, IETF, June 2014.
https://tools.ietf.org/html/rfc7231

[Fowler (2010)]
Fowler, M. “Richardson Maturity Model”, martin.fowler.com, March, 2010.
http://martinfowler.com/articles/richardsonMaturityModel.html

[Freed (1996)]
Freed N., Borenstein, N. “Multipurpose Internet Mail Extensions (MIME) Part Two:
Media Types”, RFC 2046, IETF, November 1996.
http://www.ietf.org/rfc/rfc2046.txt

[Goessner (2007)]
Goessner, Stefan. “JSON Path – XPath for JSON”.
http://goessner.net/articles/JsonPath/

[Gregorio et al. (2012)]
Gregorio, J., Fielding, R., Hadley, M., Orchard, D. “URI Template”, RFC 6570, March 2012.
https://tools.ietf.org/html/rfc6570

[Herzum (2000)]
Herzum, P., Sims O. Business Component Factory, John Wiley & Sons, Inc., 2000.

[IANA]
Internet Assigned Numbers Authority. “MIME Media Types”.
http://www.iana.org/assignments/media-types

[IANA (2012)]
Internet Assigned Numbers Authority. “Hypertext Transfer Protocol (HTTP) Status Code
Registry”, November 2012.
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml

[IANA (2013a)]
Internet Assigned Numbers Authority, “Link Relations”, March 2013.
http://www.iana.org/assignments/link-relations/link-relations.xml

http://www.w3.org/Protocols/rfc2616/rfc2616.html
http://tools.ietf.org/html/rfc2616
http://www.ics.uci.edu/%7Efielding/pubs/dissertation/top.htm
https://tools.ietf.org/html/rfc7231
http://martinfowler.com/articles/richardsonMaturityModel.html
http://www.ietf.org/rfc/rfc3986.txt
http://goessner.net/articles/JsonPath/
https://tools.ietf.org/html/rfc6570
http://www.iana.org/assignments/media-types
http://www.iana.org/assignments/http-status-codes/http-status-codes.xml
http://www.iana.org/assignments/link-relations/link-relations.xml

RESTful API Web Design

Page 160 of 163

[IANA (2013b)]
Internet Assigned Numbers Authority. “Message Headers”, March 2013.
http://www.iana.org/assignments/message-headers/message-headers.xml

[IANA (2013c)]
Internet Assigned Numbers Authority. “Hypertext Transfer Protocol (HTTP) Parameters –
HTTP Content-Coding Values”, January 2013.
https://www.iana.org/assignments/http-parameters/http-parameters.xhtml

[IANA (2013d)]
Internet Assigned Numbers Authority. “Character Sets”, January 2013.
https://www.iana.org/assignments/character-sets/character-sets.xhtml

[ISO 11179 (2003)]
ISO. “Information technology – Metadata registries Party 3: Registry metamodel and basic
attributes, February 2003.

[JSON.org]
http://www.json.org/

[Levinson (1998)]
Levinson, E. “The MIME Multipart/Related Content-type”, RFC 2387, IETF,
August 1998.
http://www.ietf.org/rfc/rfc2387.txt

[Longden (2012)]
Longden, Ben. “vnd.error”
https://github.com/blongden/vnd.error

[Loreto et al. (2011)]
Loreto, S., Saint-Andre, P., Salsano, S., Wilkins, G. “Know Issues and Best Practices for the
Use of Long Polling and Streaming in Bidirectional HTTP”, RFC 6202, IETF, April 2011.
http://tools.ietf.org/html/rfc6202

 [Marvin et al. (2010)]
Marvin, K., Maier, Z. “Making APIs Faster: Introducing Partial Response and Partial
Update”, The official Google Code blog, March 2010.
http://googlecode.blogspot.com/2010/03/making-apis-faster-introducing-partial.html

[Masinter (2015)]
Masinter, L. “Returning Values from Forms: multipart/form-data”, RFC 7578, IETF, July
2015.
https://tools.ietf.org/html/rfc7578

[Masse (2011)]
Masse, Mark. REST API Design Rulebook, O’Reilly, 2011.

[Nottingham (2010)]
Nottingham, M. “Web Linking”, RFC 5988, IETF, October 2010.
http://tools.ietf.org/html/rfc5988

http://www.iana.org/assignments/message-headers/message-headers.xml
https://www.iana.org/assignments/http-parameters/http-parameters.xhtml
https://www.iana.org/assignments/character-sets/character-sets.xhtml
http://www.json.org/
http://www.ietf.org/rfc/rfc3986.txt
https://github.com/blongden/vnd.error
http://tools.ietf.org/html/rfc6202
http://googlecode.blogspot.com/2010/03/making-apis-faster-introducing-partial.html
https://tools.ietf.org/html/rfc7578
http://tools.ietf.org/html/rfc5988

RESTful API Web Design

Page 161 of 163

[OASIS (2014a)]
Pizzo, Michael. Handl, Ralf. Zurmuehl, Martin. “OData Version 4.0 Part 1: Protocol”, OASIS
Standard, October 2014.
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html

[OASIS (2014b)]
Pizzo, Michael. Handl, Ralf. Zurmuehl, Martin. “OData Version 4.0 Part 2: URL
Conventions”, OASIS Standard, October 2014.
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html

[Orchard (2003)]
Orchard, D. (2003), “Versioning XML Vocabularies”, XML.com, December 03. (XML.com
article by David Orchard December 03, 2003)

[Phillips, A., Davis, M. (2009)]
Phillips, A., Davis, M. “Tags for Identifying Languages”, RFC 5646, IETF, September 2009.
http://tools.ietf.org/html/rfc5646

[Preston-Werner]
Preson-Werner, T. “Semantic Versioning 2.0.0-rc.1”.
http://semver.org/

[Raggett (1999)]
Raggett, D., Le Hors, A., Jacobs, I. “HTML 4.01 Specification”, W3C Recommendation, W3C,
December 1999.
http://www.w3.org/TR/html4/

[RESTPatterns (2011)]
REST & WOA Wiki, REST Patterns. 2011
http://restpatterns.org/

[Richardson (2008)]
Richardson, L. “Introducing Real-World REST”, QCon, San Francisco, November, 2008.
http://qconsf.com/sf2008/dl/qcon-sanfran-2008/slides_/LeonardRichardson.pdf

[Richardson (2013)]
Richardson, L. , Amundsen, M. RESTful Web APIs, O’Reilly, 2013.

[RubyOnRails Org (2012)]
RubyOnRails Org. “Edge Rails: PATCH is the new primary HTTP method for updates”,
February 2012.
http://weblog.rubyonrails.org/2012/2/25/edge-rails-patch-is-the-new-primary-http-
method-for-updates/

[Spainhour (1996)]
Spainhour, S., Quercia, V. “Webmaster In A Nutshell”, O’Reilly & Associates, Inc., October
1996.

[Snell (2014)]

http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part1-protocol.html
http://docs.oasis-open.org/odata/odata/v4.0/odata-v4.0-part2-url-conventions.html
http://www.xml.com/pub/a/2003/12/03/versioning.html
http://www.xml.com/pub/a/2003/12/03/versioning.html
http://tools.ietf.org/html/rfc5646
http://semver.org/
http://www.w3.org/TR/html4/
http://qconsf.com/sf2008/dl/qcon-sanfran-2008/slides_/LeonardRichardson.pdf
http://weblog.rubyonrails.org/2012/2/25/edge-rails-patch-is-the-new-primary-http-method-for-updates/
http://weblog.rubyonrails.org/2012/2/25/edge-rails-patch-is-the-new-primary-http-method-for-updates/

RESTful API Web Design

Page 162 of 163

Snell, J. “Prefer Header for HTTP”, RFC 7240, IETF, June 2014.
https://tools.ietf.org/html/rfc7240

[Troost (1995)]
Toost, E. “Communicating Presentation Information in Internet
Messages: The Content Disposition Header”, RFC 1806, IETF, June 1995.
http://www.ietf.org/rfc/rfc1806.txt

[Troost et al. (1997)]
Toost, E., Dorner, S. “Communicating Presentation Information in Internet Messages: The
Content Disposition Header Field”, RFC 2183, IETF, August 1997.
https://tools.ietf.org/html/rfc2183

[Williams (2008)]
Williams, P. “Versioning REST Web Services”, What could possibly go wrong?, May 11,
2008.
http://barelyenough.org/blog/2008/05/versioning-rest-web-services/

[Zyp et al. (2013a)]
Zyp, K., Court, G. “JSON Schema: core definitions and terminology”, draft-zyp-json-
schema-04, IETF, January 31, 2013.
https://tools.ietf.org/html/draft-zyp-json-schema-04

[Zyp et al (2013b)]
Zyp, K., Court, G. “JSON Hyper-Schema: Hypertext definitions for JSON Schema”, draft-luff-
json-hyper-schema-00, IETF, February 1, 2013.
https://tools.ietf.org/html/draft-luff-json-hyper-schema-00

16 Appendix A: Message Body Alternatives
Three alternatives are available for representing OAGIS messages in “RESTful” Web APIs.
The alternatives vary in their RESTful “maturity level” [Richardson (2008), Fowler (2010)]
(as described in the section: Introduction) and/or the extent to which they leverage the
HTTP Message Architecture (as described in the section: Message Architecture).

In the first alternative, the message-body includes the full OAGIS Business Object
Document (BOD): the ApplicationArea, the DataArea (comprising the Verb and Noun). This
alternative aligns to a Level 1 maturity level where HTTP protocol is used for communication
and Nouns are recognized and managed as resources.

In the second alternative, the message-body includes only the OAGIS Noun or a
Component, MetaHeader and PaginationResponse elements. Instead of using the
ApplicationArea (of the first alternative), the smaller and more compact MetaHeader
element, in addition to the Custom HTTP Message Headers (as described in section: Custom
Headers), are used. This alternative aligns to a Level 2 or 3 depending on whether or not
the resource representation includes hypermedia controls.

In the third alternative, the message-body includes only the OAGIS Noun or a Component
and PaginationResponse element. Instead of using either the ApplicationArea (of the first
alternative) or the MetaHeader (of the second alternative), the Custom HTTP Message

https://tools.ietf.org/html/rfc7240
http://www.ietf.org/rfc/rfc3986.txt
https://tools.ietf.org/html/rfc2183
http://barelyenough.org/blog/2008/05/versioning-rest-web-services/
https://tools.ietf.org/html/draft-zyp-json-schema-04
https://tools.ietf.org/html/draft-luff-json-hyper-schema-00

RESTful API Web Design

Page 163 of 163

Headers are used. This alternative aligns to a Level 2 or 3 depending on whether or not the
resource representation includes hypermedia controls.

	1 Conventions
	2 Introduction
	2.1 Purpose
	2.2 Scope and Applicability
	2.3 Goal of This Specification
	2.4 Definitions and Terminology
	2.4.1 Definitions
	2.4.2 Terminology

	3 Rationale
	4 Versioning
	4.1 Backwards Compatibility

	5 Message Architecture
	6 Message Headers
	6.1 General Headers
	6.2 Request Headers
	6.3 Response Headers
	6.4 Entity Headers
	6.5 Custom Headers
	6.6 Caching
	6.6.1 Expiration Mechanism
	6.6.2 Validation Mechanism

	7 Message Resource Identification
	7.1 Resource Types
	7.2 URI Design and Format
	7.2.1 Service Owner
	7.2.1.1 Design

	7.2.2 API and Developer Domains
	7.2.2.1 API Domain
	7.2.2.2 Developer Domain

	7.2.3 URI Path
	7.2.3.1 Service Domain
	7.2.3.2 API Version
	7.2.3.3 Resource Model
	7.2.3.4 Format

	7.2.4 URI Query
	7.2.4.1 Design
	7.2.4.2 Format

	7.3 URI Encoding
	7.4 URI Template Design and Format

	8 Message Resource Management
	8.1 Query Criteria in the Query Component
	8.1.1.1 Specifying Filter Criterion
	8.1.1.2 “any/all” Lambda Operators

	8.2 Query Criteria in the Path Component
	8.3 CRUD Operations
	8.3.1 Create Operations
	8.3.2 Update Operations
	8.3.3 Delete Operations
	8.3.4 Read Operations
	8.3.4.1 Specifying Selection Criterion (for a Partial Response)
	8.3.4.2 Specifying Expansion Criterion
	8.3.4.3 Specifying Instance Resource Start Sequence Criterion
	8.3.4.4 Specifying Instance Resource Maximum Number Criterion
	8.3.4.5 Specifying Instance Resource Total Number Criterion
	8.3.4.6 Specifying Order Criterion
	8.3.4.7 Specifying Search Criterion
	8.3.4.8 Specifying Pagination Criteria
	8.3.4.8.1 Client Requires Pagination Read Consistency
	8.3.4.8.2 Client Does Not Require Pagination Read Consistency

	8.3.4.9 Specifying View Criterion

	8.3.5 Conditional Operations
	8.3.6 A Note on Nulls

	8.4 Custom Operations
	8.5 Bulk Operations
	8.6 A Pattern for Large URIs and Query Components with Sensitive Data

	9 Hypermedia Controls
	9.1 Hypermedia Actions

	10 Confirmation Management
	10.1 HTTP Response Status
	10.1.1 1xx Informational
	10.1.2 2xx Success
	10.1.3 3xx Redirection
	10.1.4 4xx Client Error
	10.1.5 5xx Server Error

	10.2 Confirm Message Request
	10.3 Confirm Message Response

	11 Patterns for Asynchronous Communication
	11.1 A pattern for Service Provider Push
	11.2 A Pattern for Service Consumer Pull
	11.3 A Pattern for Service Consumer Polling and Pull

	12 Patterns for Event Notifications
	12.1 A Pattern for Long Polling

	13 Special Cases
	13.1 Media Type Selection
	13.2 Multipart Message Instances

	14 Message Body Representations
	14.1 Metadata Representation
	14.2 Resource Representations

	15 References
	16 Appendix A: Message Body Alternatives

