
OAGi D at a Man ag em en t L an g u ag e S p ec i f ic at i on V ers i on 1 .2

Copyright © 1995-2012 Open Appl icat ions Group, Inc. Al l rights reserv ed

 1

. 2

 3

 4

 5

 6

Open Applications Group – Position Paper 7

Data Management Language Specification 8

 9

 10

 11

 12

Project Team Leader: 13

Steffen M. Fohn, Ph.D. – ADP 14

 15

 16

Authors: 17

Steffen M. Fohn, Ph.D. – ADP 18

Dave Carver – STAR 19

Isabel Espina – ADP 20

Kurt Kanaski – Merck 21

Santosh Krishnakumar – CISCO 22

Michael Rowell – OAGi 23

 24

 25

Reviewers: 26

David Connelly – OAGi 27

Chuck Allen – HRInterop 28

Paul Kiel – XML Helpline 29

Pat O’Connor – Infor 30

 31

 32
 33

Version: 1.2 34
Document Number: 20090406-1 35

36

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

Copyright © 1995 - 2012 Open Appl icat ions Group, Inc. Al l rights reserv ed

2

NOTICE37

 38
 39
The information contained in this document is subject to change without notice. 40
 41
The material in this document is published by the Open Applications Group, Inc. for evaluation. 42
Publication of this document does not represent a commitment to implement any portion of this 43
specification in the products of the submitters. 44
 45
WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, OPEN 46
APPLICATIONS GROUP, INC. MAKES NO WARRANTY OF ANY KIND WITH REGARD TO 47
THIS MATERIAL INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF 48
MERCHANT ABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Open Applications 49
Group, Inc. shall not be liable for errors contained herein or for incidental or consequential 50
damages in connection with the furnishing, performance or use of this material. 51
 52
This document contains proprietary information, which is protected by copyright. All Rights 53
Reserved. No part of this work covered by copyright hereon may be reproduced or used in any 54
form or by any means—graphic, electronic, or mechanical, including photocopying, recording, 55
taping, or information storage and retrieval systems—without permission of the copyright owner. 56
 57
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to 58
restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer 59
Software Clause at DFARS 252.227.7013. 60
 61
 62
 63
 64
 65
 66
 67
 68
 69

Copyright 2012 by Open Applications Group, Incorporated 70
 71
For more information, contact: 72
Open Applications Group, Inc. 73
P.O. Box 4897 74
Marietta, Georgia 30061 USA 75
Telephone: 1.770.943.8364 76
Internet: http://www.openapplications.org 77

 78

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

Table of Contents 79

 80

1.0 Overview ... 6 81

2.0 Rationale ... 6 82

3.0 Approach .. 6 83

4.0 Data Management Language Specification ... 7 84

4.1 Constructs of the OAGIS Data Management Language 7 85
4.1.1 Action Verbs ... 8 86
4.1.2 Request Verbs .. 9 87
4.1.3 Response Verbs ... 11 88

4.2 Data Management Approaches and Operations... 13 89
4.2.1 Create, Update, and Delete Data Management 13 90
4.2.1.1 The Snapshot Approach ..15 91
4.2.1.2 The Incremental Approach ...16 92
4.2.1.3 Identifying Noun Instances Managed ...18 93
4.2.1.4 Summary of the Approaches..19 94
4.2.2 Read Data Management ... 22 95
4.2.2.1 Techniques for Specifying Selection Criteria22 96
4.2.2.2 Technique for Specifying Filter Criteria ..24 97
4.2.2.3 Multiple-Record Handling Techniques ...24 98

Appendix A: References ... 33 99

Appendix B: Rule Terminology ... 34 100

Appendix C: Examples .. 35 101

102
103

OAGi Data Management Language Specification Version 1.2

Abstract 104

This document describes how to use the OAGIS Data Management Language to 105

communicate data management instructions in OAGIS BOD (Business Object Documents) 106

message instances. 107

Objective 108

The objective of this specification is to describe describes the language and guidelines for 109

communicating and processing data management instructions (Create, Read, Update, and 110

Delete operations) specified within message instances for messages defined in OAGi’s 111

Integration Specification (OAGIS). 112

The specification endeavors to attain the following design goals: 113

 A message encapsulates both behavior and structure – data management 114

instructions should be contained in the contents of the message. 115

 The data management specification should be defined at the business layer. It is 116

therefore agnostic to systems’ physical database implementations. 117

 The data management specification should offer flexibility in accommodating 118

different data management approaches (i.e., snapshot and incremental) 119

 The data management specification should enunciate concise language and 120

guidelines for conveying data management instructions for each data management 121

approach supported. 122

 The data management specification should promote simplicity so as to not add 123

unnecessary complexity and overhead during message production and 124

consumption. 125

 The data management specification should be technologically feasible across a 126

majority of data binding frameworks. 127

Terminology 128

 Message – definition or schema of the information from which message instances 129

are instantiated. 130

 BOD – (Business Object Document) is a message that assembled from OAGi’s 131

Integration Specification (OAGIS) 132

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

Copyright © 1995 - 2012 Open Appl icat ions Group, Inc. Al l rights reserv ed

5

 Message instance – an instance of message that complies with the definition or 133

schema of the message. 134

 BOD instance – is a message instance of a BOD. 135

 Get request – is a BOD instance of a BOD defined with the Get verb; it is used to 136

request information from a system. 137

 Show response – is a BOD instance of a BOD defined with Show verb; it is used to 138

respond to a Get request. 139

140

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

1.0 OVERVIEW 141

Although there are several criteria to successful application of a Message Library in an 142

operational environment, there is one criterion that overshadows the others in relative 143

importance. This is the consistent application of the message definitions and related 144

guidelines across systems communicating with each other. Consistent application 145

mandates standard representation and interpretation of the interchange language; this 146

notion is otherwise referred to as the contract to which systems must adhere in the 147

production and consumption of message instances. 148

Elements of the OAGIS interchange language support: 149

 Message transaction data (i.e., in the BOD Application Area) 150

 Message payload data (i.e., in the BOD Noun) 151

 Message data management instructions (i.e., in the BOD Verb) 152

This paper focuses on the last bullet. The objective is to describe both the language 153

elements and the associated guidelines of how these language elements should be applied 154

in order to meet their intended design purpose. This is necessary to ensure standard 155

representation and interpretation of message data management instructions. 156

Note: OAGIS defines a message architecture called the Business Object Document (BOD) 157

architecture. A given message definition, implementing this message architecture, is 158

referred to as a Business Object Document (BOD). A BOD is composed of an 159

ApplicationArea and a DataArea. The ApplicationArea acts as header to the message; the 160

DataArea represents the message body that is comprised of a Verb and Noun. 161

2.0 RATIONALE 162

This document is intended to describe the specification (rules) for managing data 163

communicated in OAGIS-based messages between systems. This is an essential part of 164

the data management language specification. 165

This document is to be used as a guide by Application Architects, Information Architects, 166

Business Analyst, and Developers to assist in the creation of system interfaces that 167

produce and consume BOD messages. 168

3.0 APPROACH 169

The term data management in this document is used as an umbrella term to represent all 170

CRUD (Create, Read, Update, and Delete) operations. 171

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 7

The remainder of this document describes the Data Management Language Specification, 172

specifically: 173

 The constructs (vocabulary and syntactical structure) of the OAGIS data 174

management language defined and available in the OAGIS message library 175

 The data management operations and the rules of how the data management 176

language constructs, above, are to be applied 177

To assist in the readability of this document, discussion of the data management 178

operations is subdivided into two major sections. The first section will address the Create, 179

Update, and Delete (CUD) data management operations. The second section will address 180

the Read (R) data management operations. 181

Note: 182

All rules of the specification are prefixed with an “R” and sequentially numbered (i.e., R1). This is 183
applicable to all BODs and is independent of the BOD’s version. 184

4.0 DATA MANAGEMENT LANGUAGE SPECIFICATION 185

4.1 Constructs of the OAGIS Data Management 186

Language 187

OAGIS defines three verb types: Action, Response, and Request. Table 1 shows the 188

verbs classified by Verb Type. 189

Verb Verb Type

Cancel Action

Change Action

Load Action

Notify Action

Post Action

Process Action

Sync Action

Update Action

Acknowledge Response

Confirm Response

Respond Response

Show Response

Get Request

Table 1: OAGIS Verbs and Verb Types 190

The Verb itself represents a coarse-grain action, response, or request related to the 191

respective Noun of the BOD. For example, the Process verb communicates a request to 192

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 8

the receiver system to process the message instance (for example, a 193

ProcessPersonRegistration BOD communicates a request to the Registry Service to 194

Process a Person Registration). More detailed constructs are available within the verb that 195

enables communication of finer-grain actions on a Noun’s components (vs. the coarser 196

Noun level). 197

4.1.1 Action Verbs 198

The action verbs are the OAGi language elements through which Create, Update, and 199

Delete data management instructions are conveyed by message senders to receivers. 200

Table 1 lists the action verbs: Cancel, Change, Load, Post, Process, Sync, and Update. 201

Figure 1, shows the elements of the ActionVerbType schema definition. An action verb 202

supports zero-to-many ActionCriteria. Each ActionCriteria supports zero-to-many 203

ActionExpressions and zero-to-one ChangeStatus. The ActionExpression is the 204

mechanism used to represent the data management instructions in a BOD instance; 205

specifically, this includes identification of the element(s) and the action to be taken on 206

those elements. Identification of the element may consist of its location in the schema 207

structure and possibly additional key value information if it is necessary to identify a 208

specific element of interest in a BOD instance. ChangeStatus may be used to 209

communicate state change information (e.g. the EffectiveDateTime and ReasonCode for 210

the state change as well as the FromStateCode and ToStateCode). 211

The ActionExpression has two attributes: actionCode and expressionLanguage. The 212

ActionExpression.actionCode specifies an action to be taken by the receiver of the BOD 213

instance. The ActionExpression.actionCode is restricted to a value domain. The 214

actionCode’s value domain includes: Add, Change, Delete, and Replace. 215

Recall that the BOD architecture specifies that a BOD instance must have exactly one 216

Verb instance and may have one-to-many Noun instances. Since an action verb (e.g., 217

process) supports multiple ActionCriteria and multiple ActionExpressions, a many-to-218

many relationship exists between the ActionExpression and the Noun. More specifically, 219

an ActionExpression must be associated with one-to-many Nouns and a Noun may be 220

associated zero-to-many ActionExpressions. 221

The noun of the BOD instance is used to represent the added entities for the element 222

identified in the add action code, the changed entities for the element identified in the 223

change action code, the deleted entities for the element identified in the delete action code, 224

and the replacement entities for the element identified in the replace action code. 225

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 9

 226

Figure 1: Action Verb Type 227

4.1.2 Request Verbs 228

The request verbs are the OAGi language elements through which Read data 229

management instructions are conveyed by message senders to receivers. Table 1 lists the 230

request verb: Get. 231

Figure 2, shows the elements of the RequestVerbType schema definition. The Expression 232

has one attribute: expressionLanguage. 233

 234

Figure 2: Request Verb Type 235

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 10

Figure 3, below, shows that the GetType is defined as an extension to the 236

RequestVerbType. The Get verb is instantiated from the GetType. 237

 238

Figure 3: Get Type 239

The extension includes several attributes whose values may be set as part of a Get 240

request. The attributes are defined as follows: 241

 uniqueIndicator – Indicates whether duplicates should be filtered out. 242

 maxItems – Communicates the maximum number of records of a recordSet that 243

should be returned in a Show response. 244

 recordSetSaveIndicator – A true value indicates that receiver should save the 245

record set. 246

 recordSetStartNumber – The record number identifying the first record that 247

should be returned in the Show response. This attribute is specified on 248

subsequent Get requests, not the initial Get request
1
. The requesting system may 249

determine this number from the prior Show response (see the Show verb attributes 250

for more information) 251

1
 This document differentiates, as needed, initial Get requests from subsequent ones. The two

types of requests are related by a single read operation (selection and filter criteria). Subsequent

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 11

 recordSetReferenceID – Unique identifier of the RecordSet. It is generated by 252

the producer of the Show response as a result of the original Get request. 253

4.1.3 Response Verbs 254

The response verbs are the OAGi language elements through which message receivers 255

can convey meta-data on the response to the sender of the original message instance. 256

The response verbs are used in message instances that respond to action verb-based 257

message instances (i.e., an Acknowledge response to a Process action), request-verb 258

based messages instances (i.e., a Show response to a Get request), or even other 259

response-verb messages instances (i.e., a Confirm response to a Show response). 260

Table 1 lists the response verbs: Acknowledge, Confirm, Respond, Show. 261

Figure 4, below, shows the elements of the ResponseVerbType schema definition. The 262

ResponseExpression has two attributes: actionCode and expressionLanguage. The 263

actionCode specifies an action that was taken by the receiver of the BOD instance. 264

The ResponseExpression.actionCode is restricted to a value domain. The actionCode’s 265

value domain includes: Accepted, Modified, and Rejected. 266

A response verb, specifically the Show verb, is the OAGi language element through which 267

the results from processing the Read data management instruction are returned to the 268

sender of the Get request. Table 1 shows Get as the only request verb. 269

Figure 5 shows that the ShowType is defined as an extension of the RequestVerbType. 270

 271

Figure 4: Response Verb Type 272

Get request(s) may be communicated when the initial Get request results in more records that
can be returned in a single Show response.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 12

 273

 274

Figure 5: Show Type 275

The extension includes several attributes whose values may be set of part of a Show 276

response. The attributes are defined as follows: 277

 recordSetStartNumber – The record number identifying the first record returned 278

in the Show response. The producer of the Show response generates this 279

number. It used by the requesting system to determine the start number of the 280

subsequent Get request 281

 recordSetCount – Number of records in the recordSet. 282

 recordSetTotal – Number of total records in a recordSet. 283

 recordSetCompleteIndicator – Indicates whether the Show response represents 284

the end of the recordSet. 285

 recordSetReferenceID – Unique identifier of the RecordSet. It is generated by the 286

producer of the Show response as a result of the original Get request. 287

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 13

4.2 Data Management Approaches and Operations 288

This section describes how the OAGIS data management language constructs, above, are 289

to be applied in describing and conveying data management operations in BOD message 290

instances. As mentioned above, this is described in two parts: first, the Create, Update, 291

and Delete (CUD) data management operations, and second, the Read (R) data 292

management operation. 293

4.2.1 Create, Update, and Delete Data 294

Management 295

Create, update, and delete data management, as referred to in this document, considers 296

two related aspects: 297

 the data management approach 298

 the data management instructions, needed to convey the approach and the create, 299

update, and delete operations 300

There are two data management approaches: 301

 the Snapshot or Full Refresh 302

 the Incremental or Delta 303

While the Snapshot approach is generally considered simpler to implement than the 304

Incremental approach, message instances based on the Snapshot approach are larger in 305

size and may require longer processing time than those based on the Incremental 306

approach. 307

Recall, that the action verbs are the OAGi language elements through which create, 308

update, and delete data management instructions are conveyed by message senders to 309

receivers. This section will describe how the language elements are to be used to clearly 310

communicate the data both the data management approach and operations. 311

There are standard conventions and guidelines that form the basis of the data 312

management specification that are applicable to both the incremental and snapshot 313

approaches; they may be considered rules and are stated below. 314

For any action verb-based BOD instance the following rules (R) apply: 315

R1: An entity
2
 represented by an element in a noun instance, should be identified by an ID or set 316

of IDs (in the case of a composite key)
3
. 317

2
 Entity is an instance of an entity class and is characterized by having properties.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 14

R2: The management of entity IDs (e.g., surrogate keys) must not occur in message instances 318
communicating business transactions; management of IDs (e.g., migrate one ID value to another 319
ID value in a merge process) must occur in a message specialized designed for this purpose. 320

R3: A business task identifier
4
 may be specified in the ApplicationArea.Sender.TaskID as an 321

annotation on the message instance 322

R4: The flexibility of the schema supports a many-to-many relationship between the verb’s 323
ActionCriteria and the Noun. 324
1. A Noun instance may be associated with multiple ActionCriteria instances. 325
2. An ActionCriteria instance may be associated with multiple Noun instances. 326

R5: The flexibility of the schema supports a many-to-many relationship between the verb’s 327
ActionExpression and the Noun. 328
1. A Noun instance may be associated with multiple ActionExpression instances. 329
2. An ActionExpression instance may be associated with multiple Noun instances. 330

Figure 1 in the previous section, shows that the ActionExpression and ChangeStatus are 331

related through the ActionCriteria. The cardinalities of these elements mandates that the 332

set of ActionExpressions within the ActionCriteria may be associated with at most one 333

ChangeStatus. 334

R6: If one-to-many ActionExpressions are associated with a ChangeStatus, then that association 335
must be represented with exactly one ActionCriteria. 336

R7: An actionCode may be specified in the ActionExpression.actionCode 337

R8: actionCode=”Add” in the Action Expression must be used to indicate the creation/addition of 338
an entity represented by the element identified in the expression. 339

R9: actionCode=”Change” in the Action Expression must be used to indicate the modification of 340
an entity represented by the element identified in the expression. 341

R10: actionCode=”Delete” in the Action Expression must be used to indicate the 342
removal/deletion of an entity represented by the element identified in the expression. 343

R11: actionCode=”Replace” in the Action Expression must be used to indicate the replacement 344
of an entity represented by the element identified in the expression. 345

R12: The expression of the ActionExpression must specify the element5 of the noun 346
instance that represents the managed entity. 347

348
3
 IDs used to identify entity(s) being managed should be universally agreed-to across applications

that are participating in an integration initiative. An ID Registry should be established that defines
for each message the entity IDs required.
4
 A business task is a generalization of business action and business event. Business actions

correspond to commands and requests; business events correspond to event notifications.
Readers are referred to the document, “Business Task Message Framework” for further
information on business tasks
5
 An element of the noun may include the noun, itself, or a constituent element (i.e., Component,

Field).

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 15

Note: Given a BOD instance with multiple Noun instances, if an expression applies to all of the 349
noun instances, the expression must not specify a noun instance. (In other words, specification 350
of the noun instance must be avoided since the expression is intended to apply to all of the noun 351
instances.) 352

Note: Given a BOD instance with multiple Noun instances, if an expression applies uniquely to a 353
noun instance, the expression must specify the noun instance being managed. 354

 355

R13: The expression of the Action Expressions must be written in an xml expression language 356
(i.e., XPath, XQuery). 357

R14: The set of elements being managed must be well-defined and understood by 358
message senders and receivers. 359

4.2.1.1 The Snapshot Approach 360

The Snapshot or Full Refresh approach is defined by the following: 361

 A subset of a Noun is communicated in a message instance; note that the subset 362

could be the Noun, itself, or any element
6
 therein. This subset corresponds to 363

scope of data being managed, in other words the scope of data in the snapshot. 364

o Any subset of elements managed together should be aggregated as an 365

element in the message and be identifiable through a standard ID(s) (i.e., 366

the properties of a person would be aggregated in a person element that 367

has an ID). 368

o Elements in a message instance include all elements in the scope of the 369

snapshot. 370

o The scope of data being managed must be well-defined and understood 371

by the senders and receivers 372

 A snapshot by definition is a refresh or replacement of some set of data for a 373

defined scope. Processing a snapshot may result in data having been created, 374

updated, deleted, and/or not changed. This is because a snapshot contains all the 375

data in a defined scope, regardless of whether or not a given element within the 376

scope has changed. 377

 Detailed data management instructions for Create, Update, and Delete operations 378

are not communicated in the message instance. 379

6
 Element, as used herein, is equivalent to the concept of a schema element that may represent

entity classes and their properties.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 16

The sender of a Snapshot message may be either a System of Record (SOR) publishing a 380

snapshot of data or a non-SOR system that is requesting its targeted receivers to process 381

a snapshot of data. In both cases, the Sender may communicate the business task that 382

caused the message instance to be created and communicated. 383

The receiver of a Snapshot message instance MUST update its system with all the 384

elements of the message instance that it manages. This may result in “creating” entities 385

that were in the message but not in the system, updating” entities that were in the message 386

and also in the system, and “deleting” entities that were not in the message but present in 387

the system. 388

There are standard conventions and guidelines that form the basis of the data 389

management specification that are applicable to the Snapshot approach; they may be 390

considered preconditions. 391

For any action verb-based BOD instance used in the Snapshot approach the 392

following rules (R) apply: 393

R17: Any of the action verbs may be used. 394

R18: The ActionExpression.actionCode must be restricted to the set of values: {Replace} 395

The Replace action code must be used in the snapshot data management approach where 396

a “snapshot” of the entity(s) (and all its constituent entity(s)) is taken by the sending system 397

and published. The snapshot is considered to be a “refresh” of the data; adds, changes, 398

deletes are not explicitly indicated in the message. 399

For any action verb-based BOD instance used in the Snapshot approach the 400

following rules (R) apply: 401

R14.1: The set of elements being managed must be well-defined and understood by message 402
senders and receivers. 403

4.2.1.2 The Incremental Approach 404

The Incremental or Delta approach is defined by the following: 405

 A subset of a Noun is communicated in a message instance; note that the subset 406

could be the Noun, itself, or any element therein. 407

o Any subset of elements managed together should be aggregated as an 408

element in the message and be identifiable through a standard ID(s) (i.e., the 409

properties of a person would be aggregated in a person element that has an 410

ID). 411

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 17

o Elements (with the exception of ID(s)) in a message instance are limited to 412

those that contain entities that have been created, updated or deleted
7
. 413

o The scope of data be managed must be well-defined and understood by the 414

senders and receivers 415

 Detailed data management instructions for create, update, and delete operations are 416

communicated in the message instance 417

 Only entities that are created, updated, or deleted are communicated 418

The sender of a Incremental message may be either a System of Record (SOR) publishing 419

a Create, Update or Delete operation or a non-SOR system that is requesting its targeted 420

receivers to process a Create, Update, or Delete operation. 421

The receiver of an Incremental message instance must update its system per the data 422

management instructions (create, update, or delete operations on some set of elements) 423

conveyed in the message instance through the ActionExpressions. This may result in the 424

“creation”, “update”, or “deletion” of entities in the system as specified in the data 425

management instructions. It should be noted that the receiving system may interpret a 426

“deletion” as either a physical delete or logical delete and is dependent upon the receiving 427

systems data retention policies. 428

There are standard conventions and guidelines that form the basis of the data 429

management specification that are applicable to the Incremental approach; they may be 430

considered preconditions. 431

For any action verb-based BOD instance used in the Incremental approach the 432

following rules (R) apply: 433

R19: Any of the action verbs may be used. 434

R20: The ActionExpression.actionCode must be restricted to the set of values: {Add, Change, 435
Delete} 436

R14.2: The set of elements being managed must be well-defined and understood by message 437
senders and receivers. 438

For any “add” operation, the following rules (R) apply: 439

R21: The message instance must contain an ActionExpression with an actionCode of “Add”. 440

R12.1: The expression of the ActionExpression must specify the element of the noun instance 441
that represents the created entity. 442

For any “delete” operation, the following rules (R) apply: 443

R22: The message instance must contain an ActionExpression with an actionCode of “Delete”. 444

7
 This characteristic is a key differentiator from the snapshot approach.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 18

R12.2: The expression of the ActionExpression must specify the element of the noun instance 445
that represents the deleted entity. 446

For any “delete” operation, where the entity being deleted is identifiable with ID(s) 447

the following rules (R) apply: 448

R23: The message instance noun must only provide a reference to the entity via its ID(s) 449

4.2.1.3 Identifying Noun Instances Managed 450

The flexibility of the BOD architecture allows: 451

 Multiple noun instances to be communicated in a single BOD message instance. 452

 Multiple ActionExpressions to be communicated in the verb of the single BOD 453

message instance. 454

It is therefore possible to have a single BOD message instance with both multiple nouns 455

instances and multiple ActionExpressions. 456

Recall Rule 12, in particular the last statement: “If an ActionExpression applies uniquely to 457

a noun instance then it should identify that noun instance.” 458

R12: An expression in the ActionExpression must specify the element
8
 of the noun (or 459

occurrence thereof
9
) that is being managed. 460

In the case where an expression applies to one or more noun instances, the expression must 461
specify the noun element (i.e., node set) being managed (Note: in this case, specification of the 462
noun instance is not required since the expression is intended to apply to all of the noun 463
instances.) 464

In the case where an expression applies uniquely to a noun instance, the expression must specify 465
the noun instance being managed 466

In support of this need, a noun may be defined with DocumentID property element. The 467

DocumentID serves as an identifier of an entity corresponding to the noun. In addition to 468

the explicit DocumentID, the position of the noun instance in the BOD instance may also 469

serve to identify a specific noun instance. The positions of the sequence are specific to 470

the message instance (e.g., in the case of a message instance with two noun instances, 471

the first noun instance is understood to be in the first position of the sequence and the 472

second noun instance is understood to be in the second position of the sequence. The 473

noun instance position is referred to as the DocumentSequence below. 474

8
 An element of the noun may include the noun, itself, or a constituent element (i.e., Component,

Field).
9
 Multiple occurrences of a noun may exist within a single message instance.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 19

For any “create”, “update”, or “delete” operation, where multiple noun instances are 475

communicated in a single BOD message instance the following rules (R) apply: 476

R27: Either the DocumentID or the DocumentSequence may serve as the identifier of the noun 477
instance and used in the ActionExpression to identify the noun instance. 478

DocumentID should be used if systems are maintaining noun instance IDs (i.e., PurchaseOrder 479
Reference Number) for the entity corresponding to the noun. 480

 DocumentSequence should be used if systems are not maintaining noun instance IDs. 481

4.2.1.4 Summary of the Approaches 482

Figure 6 provides an overview diagram of the message concepts, discussed above, for the 483

representation and communication of create, update, and delete operations in data 484

management for BODs. The note construct at the bottom of the figure highlights additional 485

constraints not already captured in the model. 486

487

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 20

 488

Figure 6: BOD Data Management Model for Create, Update, and 489

Delete Operations 490

Table 2 relates the OAGi action verb and action code combinations to the data 491

management approach (Snapshot and Incremental). Each combination is annotated with 492

the Create, Update, and Delete operations that is provided through the combination. It 493

serves to identify the “universe” of possibilities or feasible combinations of OAGIS verbs 494

and action codes. 495

496

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 21

 497

Verb Action Code

Add Change Replace Delete

Cancel -- -- --
 Incremental

 - Delete

Change
Incremental
 - Create

Incremental
 - Update

Snapshot10
 - Create Update, Delete

 Incremental
 - Delete

Load
Incremental
 - Create

 --
Snapshot
 - Create, Update,
Delete

 --

Notify
Incremental
 - Create

Incremental
 - Update

Snapshot
 - Create, Update,

Delete

 Incremental
 - Delete

Post
Incremental
 - Create

Incremental
 - Update

Snapshot
 - Create, Update,

Delete

 Incremental
 - Delete

Process
Incremental
 - Create

Incremental
 - Update

Snapshot
 - Create, Update,

Delete

 Incremental
 - Delete

Sync
Incremental
 - Create

Incremental
 - Update

Snapshot
 - Create, Update,

Delete

 Incremental
 - Delete

Update
Incremental
 - Create

Incremental
 - Update

Snapshot
 - Create, Update,

Delete

 Incremental
 - Delete

Table 2: Relationship of the OAGIS Action Verb and Action Code 498

to the Data management approach and Create, Update, and 499

Delete operations 500

The OAGIS definition of each verb can be found in the OAGIS library documentation. 501

For any “update” operation, the following rules (R) apply: 502

R24: The message instance must contain an ActionExpression with an actionCode of “Change”. 503

R12.3: The expression of the ActionExpression must specify the element of the noun instance 504
that represents the changed entity. 505

R25: The message instance noun must provide a reference to the entity via its ID(s) (if one 506
exists) and only include the updated properties of the entity. 507

508
10

 In a Snapshot, the Create, Update, and Delete operations are implicit and occur within the data
scope of the snapshot.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 22

4.2.2 Read Data Management 509

Read Data management, as referred to in this document, considers the data management 510

instructions, needed to convey Read or query operations. 511

Recall, that the Get and Show verbs (Figures 3 and 5, respectively) are the OAGi language 512

elements through which Read operations and their results are conveyed between 513

requesting and responding systems. This section will describe how the language elements 514

are applied for the following: 515

 representation and communicate read operations 516

 management of the records of resulting from a read operation 517

Both selection and filter techniques are available to Get-based BOD messages.. The 518

techniques when applied in a Get message instance specify a read operation or query. 519

4.2.2.1 Techniques for Specifying Selection Criteria 520

Two alternative techniques are available for representation of the selection criteria in the 521

read operation (or query). The first technique uses a reference to predefined (or canned) 522

selection criteria. The second technique is more flexible and dynamic and allows the 523

specification of the selection criteria in the Get request. These techniques are presented 524

below. 525

For any “read” operation in a Get request, the following rules (R) apply: 526

R29: The selection criteria must be specified using either the predefined technique or the 527
dynamic technique. 528

4.2.2.1.1 Predefined Selection Criteria Technique 529

The predefined selection criteria technique requires that the communicating systems define 530

and agree upon the selection criteria and the name (i.e., keyword) that will be used to 531

reference specific selection criteria. This must be done a priori to any Get requests and 532

Show responses. 533

Once the predefined selection criteria are established, senders of a Get request must 534

include a reference to the predefined selection criteria in the Expression of the Get verb. 535

 A reference to predefined selection criteria should be named such that it describes the 536

specific selection criteria. For example, if the selection criteria includes all of the 537

information in a noun, then the noun name may serve as the reference. 538

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 23

It is likely that predefined selection criteria will evolve and change overtime. For this 539

reason, predefined selection criteria should be versioned to ensure that requesting and 540

responding systems are aligned to same version of predefined selection criteria. If multiple 541

versions of predefined selection criteria are simultaneously supported by a system, then 542

the version identifier of the predefined selection criteria should be included in its reference. 543

For any “read” operation, using predefined selection criteria, in a Get request, the 544

following rules (R) apply: 545

R30: A reference
11

 to the predefined selection criteria must be represented in the Expression of 546
the Get verb. 547

R31: Any reference to a predefined selection criteria, that is sent in a Get request to a system, 548
must be part-of the set of predefined criteria supported by that system. 549

R32: The expressionLanguage attribute of the Expression must be assigned the value 550
“Predefined”. 551

R33: A reference to predefined selection criteria may be named such that it describes the 552
selection criteria, 553

R34: If multiple versions of a predefined selection criteria are simultaneously supported by a 554
system, then the version identifier of the predefined selection criteria should be included in its 555
reference. 556

4.2.2.1.2 Dynamic Selection Criteria Technique 557

This technique for representing the selection criteria is called Data Type Selection. Data 558

Type selection enables the requesting system to identify which Data Types within the noun 559

are requested to be returned in the response. The use of this capability is described for 560

each corresponding Data Type for all BODs that use the Get verb. The Data Types are 561

identified for retrieval within the Get instance of a BOD by including the name of the Data 562

Type in the expression of the Get verb but without any filter criteria (e.g., Field Identifiers) 563

identified within the Data Type. This will signify to the responding application that all of the 564

data that corresponds to that Data Type is to be included in the response. If the Data Type 565

is not requested, the Data Type identifier is not included in the Get request and this will 566

signify to the responding component that the Data Type is not to be returned. 567

For any “read” operation, using dynamic selection criteria, in a Get request, the 568

following rules (R) apply: 569

R35: DataType selection criteria must be represented in the Expression. 570

R36: An expression specified in the Expression element of the Get verb must be written in an 571
xml expression language (i.e., XPath, XQuery). 572

11

 A reference to the predefined selection criteria serves to identify the selection criteria.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 24

4.2.2.2 Technique for Specifying Filter Criteria 573

The filtering technique is called Field-Based Filtering. Within a Get-based Business Object 574

Document, the first Data Type that occurs in a specific BOD structure is commonly used to 575

provide the Field-Based Selection criteria. This is always defined within the specific BOD 576

and is commonly the required fields for that specific Data type. The Field-Based Selection 577

enables the requesting system to provide a value or values (in the case of multiple required 578

Field Identifiers), in the required fields. Then the responding component uses those values 579

to find and return the requested information to the originating business software 580

component. 581

For any “read” operation, expressing filter criteria, in a Get request, the following 582

rules (R) apply: 583

R37: Field-Based filter criteria must be represented in the noun instance. 584

The system responding to the Get request, communicates the results of the Read 585

operation to the requesting system in a Show response. 586

4.2.2.3 Multiple-Record Handling Techniques 587

This section discusses two techniques for the handling of multiple records resulting from 588

the execution of a single read operation or query when these results cannot be returned in 589

a single Show response (message instance). This is often the case when either the 590

requesting or responding systems have message size performance measures whose 591

thresholds cannot be exceeded in order to maintain adequate system performance. The 592

techniques discussed below present alternative patterns for managing the return of results 593

in multiple Show responses. 594

Recall that the read operation is defined through the selection and filter techniques in the 595

Get verb, as described above. Recall also that both the Get and Show verbs have several 596

attributes. These attributes were previously defined and are repeated below. 597

Get Verb Attributes: 598

 uniqueIndicator – Indicates whether duplicates should be filtered out. 599

 maxItems – Communicates the maximum number of records of a recordSet that 600

should be returned in a Show response.. 601

 recordSetSaveIndicator – A true value indicates that the receiver of the Get 602

request should save the record set. 603

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 25

 recordSetStartNumber – The record number identifying the first record that 604

should be returned in the Show response. This attribute is specified on 605

subsequent Get requests, not the initial Get request
12

. The requesting system may 606

determine this number from the prior Show response (see the Show verb attributes 607

for more information). 608

 recordSetReferenceID – Unique identifier of the RecordSet. It is generated by 609

the producer of the Show response as a result of the initial Get request. 610

In general these attributes may be specified by a system, sending a Get request to indicate 611

how the receiving system should respond. 612

Show Verb Attributes: 613

 recordSetStartNumber – The record number identifying the first record returned 614

in the Show response. The producer of the Show response generates this 615

number. It used by the requesting system
13

 to determine the start number of the 616

subsequent Get request 617

 recordSetCount – Number of records in the recordSet. 618

 recordSetTotal – Number of total records in a recordSet. 619

 recordSetCompleteIndicator – Indicates whether the Show response represents 620

the end of the recordSet. 621

 recordSetReferenceID – Unique identifier of the RecordSet. It is generated by the 622

producer of the Show response as a result of the original Get request. 623

In general these attributes may be specified by a system, sending a Show response, to 624

communicate information on the results of the read operation specified in a Get request. 625

Both techniques for the handling of multiple records, presented below, leverage the Record 626

Set concept. A Record Set is defined herein to represent a set of records resulting from 627

the execution of a single read operation or query where the read operation is defined 628

through the selection and filter techniques in the Get verb. The Record Set concept is 629

represented by Get and Show verb attributes with a “recordSet” prefix. A Record Set is 630

defined as a logical construct that may or may not be saved by the system that executed 631

the read operation. 632

For any Get request, the following rules (R) apply: 633

12

 This document differentiates, as needed, initial Get requests from subsequent ones. The two
types of requests are related by a single read operation (selection and filter criteria). Subsequent
Get request(s) may be communicated when the initial Get request results in more records that
can be returned in a single Show response.
13

 Requesting system refers to the system that sent the Get request.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 26

R38: The requesting system may specify that the Record Set, representing the results of a read 634
operation, is required to be “saved” under the following conditions

14
: 635

1. The Get request could result in more data than the requesting system is able to process in a 636
single Show response. 637

2. The requesting system requires read consistency
15

 for the query results. 638

R39: To specify that the responding system is required to save a Record Set, the requesting 639
system must assign the recordSetSaveIndicator attribute of the Get verb to “true” in the Get 640
message instance. 641

R40: The requesting system must specify that the Record Set, representing the results of a read 642
operation, is not required to be “saved” under the following conditions: 643

1. The Get request could result in more data than the requesting system is able to process in a 644
single Show response. 645

2. The requesting system does not require read consistency for the query results. 646

R41: To specify that the responding system is not required to save a Record Set, the requesting 647
system may assign the recordSetSaveIndicator attribute of the Get verb to “false” in the Get 648
message instance. 649

For any initial Get request, the following rules (R) apply: 650

R42: If the requesting system has not specified value assignments to the Get verb attributes then 651
the responding system must default the attribute values as follows: 652

 uniqueIndicator – “true” 653

 maxItems – “unbounded” 654

 recordSetSaveIndicator – “false” 655

 recordSetStartNumber - Not Applicable (Ignore) 656

 recordSetReferenceID - Not Applicable (Ignore) 657

For any Get request, leveraging a Record Set (saved or unsaved), the following rules 658

(R) apply: 659

R43: The responding system must assign values to the following Show verb attributes that 660
describe the number of records being returned in the Show response. These attributes are: 661

 recordSetStartNumber 662

 recordSetCount 663

 recordSetCompleteIndicator 664

665
14

 Alternatves to a Record Set-based solution may be used to satisfy these conditions (e.g.
message segmentation at the transport layer).
15

 Read consistency ensures that all the data returned by a single query comes from a single
point in time.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 27

R43.1: The responding system may assign values to the following Show verb attributes: 666

 recordSetTotal 667

For any subsequent Get request, the following rules (R) apply: 668

R44: The requesting system must assign values to all of the Get verb attributes that describe the 669
number of records being requested in the Get message instance. These attributes are: 670

 recordSetStartNumber 671

The recordSetStartNumber must be calculated using the following equation: GetMessage 672
i+1.recordSetStartNumber = ShowMessage i.recordSetCount + 1 where i represents a Get/Show 673
message instance (request/response) pair. 674

Notice that the number of records returned is always limited by the maximum number of 675

items (records) specified in the maxItems attribute by the sending system in the Get 676

message. This attribute is set per the message size performance measure of the sending 677

system with respect to message consumption. 678

For any Get request, the following rules (R) apply: 679

R45: The requesting system may specify in a Get request the maximum number of items 680
(records) to be returned in a Show response using the maxItems attribute of the Get verb. 681

Similarly, the receiving systems may have a message size performance measure with 682

respect to the message production. Therefore the number of records in the Show 683

message instance should always correspond to the more restrictive performance measure 684

among the sending and receiving systems. In other words, the record count in the Show 685

message instance should equal the minimum of the sending system’s maximum number of 686

items (records) and the receiving system’s maximum number of items (records). 687

Recall that all BOD definitions restrict a given BOD instance to exactly one verb instance 688

and one to many noun instances. In addition, the definition of the Get verb allows one to 689

many Expression instances. As a result, it is possible that a single Get verb-based BOD 690

instance could communicate multiple read operations (Expression instance and Noun 691

instance combinations). However, such use is limited by a single set of attributes on the 692

Get and Show verbs for managing the results of the read operation. Since a Get verb-693

based or Show verb-based BOD instance may have at most a single Get or Show verb 694

instance, it is not possible to separately manage the results of multiple read operations. 695

Therefore the following rule is defined. 696

For any Get request the following rules (R) apply: 697

R46: Although the schema supports a many-to-many relationship between the verb’s Expression 698
and the Noun, the following constraints must be applied: 699

1. Exactly one read operation must be represented. 700

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 28

2. A single read operation must be comprised of the following: 701
 - One or more Expression instance(s) 702
 - No more than one Noun instance 703

As a result of this rule, all Expression instance(s) may be associated with at most one 704

Noun instance. 705

4.2.2.3.1 A Single Show Response to a Single Get 706

Request 707

The first technique or pattern uses multiple pairs of Get request and Show responses to 708

request and return the complete results of the read operation or query. This technique 709

leverages the Record Set concept, represented by attributes, prefixed with “recordSet” in 710

the Get and Show verbs (see above). 711

This technique relies on applying the Record Set concept in both the Get requests and 712

Show responses. Since the requesting system may specify that a Record Set be “saved” 713

by the responding system, two alternatives exist in using Record Set: Saved Record Set 714

and Unsaved Record Set. 715

Using a Saved Record Set 716

In this alternative, the initial Get request specifies that the responding system must save a 717

Record Set, by having assigned the recordsetSaveIndicator to “true”. 718

The responding system must uniquely identify the RecordSet (using the 719

recordSetReferenceID) and return its identifier in the Show response along with additional 720

information on the records, such as the number of records (recordSetCount) of the Record 721

Set being returned. The Record Set identifier must be then specified on any subsequent 722

Get requests where additional records of the Record Set are requested. 723

For any Get request, leveraging a Saved Record Set, the following rules (R) apply: 724

R47: The responding system must create a unique identifier of the Record Set and assign its 725
value to the recordSetReferenceID attribute of the Show verb in the corresponding Show 726
response. 727

R48: For any subsequent Get request, the requesting system must specify the unique identifier 728
of the Record Set, provided by the responding system (in the Show response to the initial Get 729
request), in the recordSetReferenceID attribute of the Get verb. 730

An Example Using Saved Record Sets: 731

A requesting system sends a Get request for all Shipments for Company Code ABC with 732

no more than 100 unique shipments at a time. The requesting system does require that 733

the receiving system maintain a saved record set for the results of the request. 734

Subsequent Get requests are issued for additional records (beyond those included in the 735

initial Show response). 736

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 29

The Get verb attribute value assignments are: 737

 uniqueIndicator = “true” 738

 maxItems = 100 739

 recordSetSaveIndicator = “true” 740

The responding system processes the Get request, constructs, executes a query, creates 741

a record set, and returns 1000 shipments for Company Code ABC. The system responds 742

with the first 100 records in a Show response. The attribute value assignments are: 743

 recordSetStartNumber = 1 744

 recordSetCount = 100 745

 recordSetTotal = 200 746

 recordSetCompleteIndicator = false 747

 recordSetReferenceID = 253 748

The requesting system (having received the Show response then requests the next 100 749

records. It sends the Get request with the following attribute value assignments: 750

 maxItems = 100 751

 recordSetStartNumber=101 752

 recordSetReferenceID = 253 753

The responding system returns the Show response with the following attribute value 754

assignments: 755

 recordSetStartNumber = 101 756

 recordSetCount = 100 757

 recordSetTotal = 200 758

 recordSetCompleteIndicator = true 759

 recordSetReferenceID = 253 760

When leveraging the Saved Record Set approach, Record Set timeout settings should be 761

maintained by the responding system. Once threshold for a Record Set timeout has been 762

met the responding system may recover the resources that were used to manage that 763

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 30

Record Set. Timeout settings should be agreed to between trading partners as part of the 764

overall contract and are communicated within the Get and Show message instances. 765

Using an Unsaved Record Set 766

This alternative is very similar to the “Saved Record Set” alternative with one primary 767

difference: the Record Set is not saved by the responding system. 768

In this alternative, the initial Get request specifies that the receiving system is not required 769

to save a Record Set by having assigned the recordsetSaveIndicator to “false”. Note that 770

although it is not necessary to save a Record Set from the perspective of the sender, the 771

receiver may still elect to save the Record Set. 772

The receiving system may uniquely identify the Record Set (using the 773

recordSetReferenceID) and return its identifier in the Show message along with additional 774

information, such as the number of records (recordSetCount) of the Record Set being 775

returned. If a Record Set identifier was provided, then it must be specified on any 776

subsequent Get requests where additional records of the Record Set are requested. 777

If the responding system has elected to not save the Record Set, then the responding 778

system must re-execute the read operation or query upon any subsequent Get requests 779

where additional records of the Record Set are requested. 780

For any Get request, leveraging an Unsaved Record Set, the following rules (R) 781

apply: 782

R49: The responding system may create a unique identifier of the Record Set and assign its 783
value to the recordSetReferenceID attribute of the Show verb in the corresponding Show 784
response. 785

R50: For any subsequent Get requests, the sender must specify the unique identifier of the 786
Record Set, if provided by the responding system (in the Show response to the initial Get 787
request), in the recordSetReferenceID attribute of the Get verb. 788

An Example Using Unsaved Record Sets: 789

This is example is almost identical to the previous example, illustrating use of the Saved 790

Record Set; the difference is in the value assignments of the recordSetSaveIndicator and 791

recordSetReferenceID attributes. 792

 A requesting system sends a Get request for all Shipments for Company Code ABC with 793

no more than 100 unique shipments at a time. The requesting system does not require 794

that the receiving system to maintain a record set for the results of the request. 795

Subsequent Get requests are issued for additional records (beyond those included in the 796

initial Show response). 797

 The Get verb attribute value assignments are: 798

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 31

 799

 uniqueIndicator = “true” 800

 maxItems = 100 801

 recordSetSaveIndicator = “false” 802

The responding system processes the Get request, constructs, executes a query, creates 803

a record set, and returns 1000 shipments for Company Code ABC. The system responds 804

with the first 100 records in a Show response. The attribute value assignments are: 805

 recordSetStartNumber = 1 806

 recordSetCount = 100 807

 recordSetTotal = 200 808

 recordSetCompleteIndicator = false 809

The requesting system (having received the Show response then requests the next 100 810

items. It sends the Get request with the following attribute value assignments: 811

 maxItems = 100 812

 recordSetStartNumber=101 813

The receiving system of the Get request returns the Show response with the following 814

attribute value assignments: 815

 recordSetStartNumber = 101 816

 recordSetCount = 100 817

 recordSetTotal = 200 818

 recordSetCompleteIndicator = true 819

4.2.2.3.2 Multiple Show Responses to a Single Get 820

Request 821

Certain request/response scenarios exist (i.e., a data load from one system to another) that 822

are characterized by the following: 823

 a large number of records in the resultant Record Set 824

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 32

 all of the records satisfying the read operations must be returned to the requesting 825

system 826

In such scenarios system performance may be gained by limiting the number of Get 827

requests to a single request. The benefits are listed below: 828

 The responding system must not “save” the Record Set (in the Saved Record Set 829

case) 830

 The responding system must not re-execute the read operation or query (in the 831

Unsaved Record Set case) 832

 The overhead in issuing creating, communicating, and processing multiple Get 833

requests, for a subset of a Record Set at a time, associated with the Get request 834

and Show response pairs is avoided. 835

This technique or pattern uses a single Get and multiple Show message instances to 836

request and return, respectively, the complete results of the read operation or query. As 837

with the first technique, it leverages the Record Set concept. 838

This technique relies on applying the Record Set concept in both the Get and Show 839

message instances. However, in this case there is no need for the requesting system to 840

specify that the responding system “save” a Record Set. For this reason, several of the 841

Get verb attributes, used to identify the RecordSet and the records in the Record Set, are 842

not applicable; they are the following: 843

 recordSetSaveIndicator 844

 recordSetStartNumber 845

 recordSetReferenceID 846

As with the previous technique, all of the Show attributes, describing the Record Set, with 847

the exception of the recordSetReferenceID must be assigned values (see rule R46). 848

There is currently no mechanism in the Get verb by which a requesting system may specify 849

to the responding system that all of the records of a Record Set should be communicated 850

to the requesting system. In lieu of such a mechanism, private agreements may be 851

created between systems that outline the conditions under which this technique or pattern 852

should be applied. These conditions include: 853

 specific message(s), 854

 the threshold (number of records in the Record Set) at which point multiple Show 855

message instances will be sent 856

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 33

APPENDIX A: REFERENCES 857

 OAGi (2005) Open Application Group Integration Specification (OAGIS) Library”, 858

Version 9.0, Open Applications Group, April. 859

 W3C (2004), “XML Schema”, October 28. 860

861

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 34

APPENDIX B: RULE TERMINOLOGY 862

This document uses the following terminology: 863

1. MUST: This word means that the requirement is absolutely REQUIRED to be 864

implemented with no exceptions. 865

2. MUST NOT: This phrase means that the requirement specifies an absolute 866

PROHIBITION and is not to be implemented. 867

3. SHOULD: This word means that the requirement is REQUIRED unless an 868

exception has been granted through the exception process. 869

4. SHOULD NOT: This phrase means that the requirement is REQUIRED NOT to be 870

implemented unless an exception has been granted through an exception process. 871

5. MAY: This word means that the requirement is OPTIONAL 872

6. Note: Terminology adapted from Scott O. Bradner, “Key words for use in RFC’s to 873

Indicate Requirement Levels,” The Internet Engineering Task Force (IETF) RFC 874

(Requests for Comments) 2119, March 1997. 875

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

APPENDIX C: EXAMPLES 876

The following table offers some examples on the application of the data management techniques. The examples are illustrated through 877

the use of business scenarios. 878

 879

Data
Management

Technique BOD Message

TaskID
(Business

Event) Verb

Verb
Action
Code

Verb
ActionExpression Required Entity IDs

Business Scenario: 1. A Purchase Order is created.

Incremental
- Create ProcessPurchaseOrder

New
Purchase
Order Process Add

/ProcessPurchaseOrder/DataArea/
PurchaseOrder

PurchaseOrderHeader.
DocumentID.ID

Notes:

1. The message contains the complete order.

Business Scenario: 2. The order quantity on an existing line in a Purchase Order is updated.

Snapshot ChangePurchaseOrder

Purchase
Order
Change Change Replace

/ProcessPurchaseOrder/DataArea/
PurchaseOrder

PurchaseOrderHeader.
DocumentID.ID

Notes:

1. The message contains the complete order.

Incremental
- Update ChangePurchaseOrder

Purchase
Order
Change Change Change

/ProcessPurchaseOrder/DataArea/
PurchaseOrder/PurchaseOrderLine/

PurchaseOrderHeader.
DocumentID.ID;
PurchaseOrderLine
LineNumber

Notes:

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 36

1. Only the DocumentID is provided in the OrderHeader.
2. All elements of the OrderLine are provided.

Data
Management

Technique BOD Message

TaskID
(Business

Event) Verb

Verb
Action
Code

Verb
ActionExpression Required Entity IDs

Business Scenario: 3. A line item on an existing Purchase Order is removed.

Snapshot ChangePurchaseOrder
Purchase
Order
Change

Change Replace
/ProcessPurchaseOrder/DataArea/
PurchaseOrder

PurchaseOrderHeader.
DocumentID.ID;
PurchaseOrderLine
LineNumber

Notes:

1. The complete order is provided

Incremental
- Delete

ChangePurchaseOrder
Purchase
Order
Change

Change Delete
/ProcessPurchaseOrder/DataArea/
PurchaseOrder/PurchaseOrderLine/

PurchaseOrderHeader.
DocumentID.ID;
PurchaseOrderLine
LineNumber

Notes:

1. Only the DocumentID is provided in the OrderHeader.
2. Only the LineNumber is provided in the OrderLine.

Business Scenario: 4. A Purchase Order is cancelled

Incremental
- Delete

CancelPurchaseOrder

Purchase
Order
Cancell-
ation

Cancel Delete
/CancelPurchaseOrder/DataArea/
PurchaseOrder

PurchaseOrderHeader.
DocumentID.ID;

Notes:

1. Only the DocumentID is provided in the OrderHeader.
2. Application of the action code in this scenario is subject to business policies. For example, a Cancel request by way of a Delete action

code may result in a “logical” deletion versus. “physical” deletion of the order.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 37

Data
Management

Technique BOD Message

TaskID
(Business

Event) Verb

Verb
Action
Code

Verb
ActionExpression Required Entity IDs

Business Scenario: 5. Two Purchase Orders are changed. The order quantity on an existing line in the first Purchase Order is
updated. A line item on the second Purchase Order is removed.

Snapshot ChangePurchaseOrder
Purchase
Order
Change

Change Replace
/ProcessPurchaseOrder/DataArea/
PurchaseOrder

PurchaseOrderHeader.
DocumentID.ID

Notes:
1. The message contains two complete orders.
2. This is an example of a single ActionExpression applying to multiple noun instances.

Incremental
- Update
- Delete

ChangePurchaseOrder
Purchase
Order
Change

Change

Change

/ProcessPurchaseOrder/DataArea/
PurchaseOrder/
PurchaseOrderHeader/DocumentID
=”111” and
PurchaseOrderLine/LineNumber
=”1”

PurchaseOrderHeader.
DocumentID.ID;
PurchaseOrderLine
LineNumber

Delete

/ProcessPurchaseOrder/DataArea/
PurchaseOrder/
PurchaseOrderHeader/DocumentID
=”222” and
PurchaseOrderLine/LineNumber
=”1”

Notes:

1. Only the DocumentID is provided in the OrderHeader.
2. For the Delete, only the LineNumber is provided in the OrderLine.
3. This is an example of a multiple unique ActionExpressions applying to different noun instances; note that the ActionExpression

identifies the data element instance being managed.

Table 3: Application of Data Management Techniques using OAGIS BODs16 880

881
16

 Business scenarios 1 through 4 assume a single noun instance in the message instance.

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 38

Note: The above examples collectively rely on a set of Business Events that were defined at a level of granularity consistent with managing 882
the Purchase Order as a whole: New Purchase Order, Purchase Order Change, and Purchase Order Cancellation. Finer-grain Business 883
Event definition is possible if it is deemed desirable to manage message routing across systems at finer-levels of control (i.e., Purchase Order 884
Line Item Change). 885

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 886

Data
Management

Technique BOD Message Verb
Verb

Attributes

Verb
ActionExpression

(Data Type Expression)
Noun Elements

(Field-Based Selection)

Business Scenario: 1. Get up to 10 purchase orders for a given customer whose order status is “Shipped”.

- Read GetPurchaseOrder Get

uniqueIndicator = “True”
maxItems = 10
recordSetSaveIndicator =
“False”

expressionLanguage =
“XPath”

/GetPurchaseOrder/DataArea/
PurchaseOrder

PurchaseOrderHeader/
CustomerParty/PartyIDs/ID =
“0001”

PurchaseOrderHeader/Status
= “Shipped”

Notes:
1. This example uses the dynamic technique for specifying the selection criteria.
2. The query expression uses the XPath language

Business Scenario: 2. Get up to 100 customer ids that have orders whose status is “Pending”.

- Read GetPurchaseOrder Get

uniqueIndicator = “True”
maxItems = 100
recordSetSaveIndicator =
“False”

expressionLanguage = “XPath”

/GetPurchaseOrder/DataArea/
PurchaseOrder/PurchaseOrder
Header/CustomerParty/PartyID
s/ID

PurchaseOrderHeader/Status
= “Pending”

1. Notes:This example uses the dynamic technique for specifying the selection criteria.
2. The query expression uses the XPath language.

887

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 40

 888

Data
Management

Technique BOD Message Verb
Verb

Attributes

Verb
ActionExpression

(Data Type Expression)
Noun Elements

(Field-Based Selection)

Business Scenario: 3. Get the entire purchase order for a given purchase order.

- Read GetPurchaseOrder Get

expressionLanguage =
“Predefined”

PurchaseOrder

PurchaseOrderHeader/
DocumentID/ID = “PO123”

Notes:

1. This example uses the predefined technique for specifying the selection criteria.
2. This example is a request for all of the information of a purchase order defined in the noun.
3. The name of the noun describing the information being selected (PurchaseOrder) is used as the reference for the predefined selection

criteria.

Business Scenario: 4. Get the summary information for a given purchase order.

- Read GetPurchaseOrder Get

expressionLanguage =
“Predefined”

PurchaseOrderSummary

PurchaseOrderHeader/
DocumentID/ID = “PO123”

Notes:

1. This example uses the predefined technique for specifying the selection criteria.
2. This example is a request for a subset of the information of a purchase order defined in the noun, specifically the summary information

of a purchase order.
3. The name of the noun in conjunction with a name describing the subset of the information being selected (PurchaseOrderSummary) is

used as the reference for the predefined selection criteria.

889

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 41

 890

Data
Management

Technique BOD Message Verb
Verb

Attributes

Verb
ActionExpression

(Data Type Expression)
Noun Elements

(Field-Based Selection)

Business Scenario: 5. Get the order line information for a given purchase order.

- Read GetPurchaseOrder Get

expressionLanguage =
“Predefined”

PurchaseOrderLine

PurchaseOrderHeader/
DocumentID/ID = “PO123”

Notes:

1. This example uses the predefined technique for specifying the selection criteria.
2. This example is a request for a subset of the information of a purchase order defined in the noun, specifically the order line information

of a purchase order.
3. The name of the noun in conjunction with a name describing the subset of the information being selected (PurchaseOrderSummary) is

used as the reference for the predefined selection criteria.

 891

892

 OAG i D at a Man ag em en t L an g u ag e Sp ec i f ic at i on V ers i on 1 .2

 42

 893

Data
Management

Technique BOD Message Verb
Verb

Attributes

Verb
ActionExpression

(Data Type Expression)
Noun Elements

(Field-Based Selection)

Business Scenario: 6. Get the order summary and order line ship to party information for a given purchase order.

expressionLanguage =
“Predefined”

PurchaseOrderHeader

PurchaseOrderHeader/
DocumentID/ID = “PO123”

PurchaseOrderLine/ShipToP
arty/PartyIDs/ID = “C155”

- Read GetPurchaseOrder Get

expressionLanguage =
“Predefined”

PurchaseOrderLineShipToParty

Notes:

1. This example uses the predefined technique for specifying the selection criteria.
2. This example uses two expressions.
3. The name of the noun in conjunction with the name describing the subset of the information being selected (PurchaseOrderHeader

and PurchaseOrderLineShipToParty) is used as the reference for both predefined selection criteria.
4. This example is a request for a subset of the information of a purchase order defined in the noun, specifically the order header and

order line ship to party information of a purchase order.

Table 4: Read Operations using OAGIS BODs 894

