

Specification for Serialization of BIE to JSON

Schema

Version 1.0
Published 2019-10-30

Serialization Specification from BIE to JSON Schema

Page 1 of 38

Credits

Editor: Serm Kulvatunyou, NIST

Other Contributors:

Scott Nieman, Land O’Lakes

Steffen Fohn, ADP

Michael Rowell, Oracle

Jim Wilson, OAGi

Hakju Oh, NIST

Nikola Stojanovic, Invited Expert

Athanasios Dimitriad, NIST

Sofian Chouder, NIST

Nenad Ivezic, NIST

Serialization Specification from BIE to JSON Schema

Page 2 of 38

Change Tracking
Date Editor Version Change Detail

10-30-2019 Serm Kulvatunyou 1.0 First version

Serialization Specification from BIE to JSON Schema

Page 3 of 38

Table of Contents

1 Glossary 5
2 Conventions 7
3 Purpose 7
4 Scope 8

 Schema size optimization 8
 Advance semantic restriction 9
 XML-JSON round-tripping 9
 Matching primitives with XML schema primitives 9
 BIE meta-data 9
 OAGIS Model JSON schemas 9
 Full BIE JSON schema for importing/exporting including CC references 9
 Open API Generation 10

5 Relevant Specifications 10
6 Tools Used for Creation of This Document 11
7 Overall Design 11

 Compatibility 11
 JSON Schema Design Pattern 11
 Plural 11
 Lower Camel Case 11
 Meta Schema 12
 Root Property Key 12
 Forgoing the Type Inheritance and Attribute Designation. 15
 Simplified BDT 20
 Forgoing the xsd:group 20

 The “additionalProperties” Key 21
 JSON Array 22

8 Normative Mapping of OAGIS Repository Entities to JSON Schema Constructs 22
 Top-level ASBIEP 22
 Top-level ABIE 23
 ASBIE and Its ASBIEP and ABIE 24
 BBIE and Its BBIEP 25
 BDT (DT table) and BBIE_SC 27
 OAGIS Built-in Type (XBT table) 27
 Code List and Agency ID List 28

9 Full BIE JSON Schema Examples 28

Serialization Specification from BIE to JSON Schema

Page 4 of 38

10 OAGIS Built-in Primitive Type Mapping to JSON Types 33

Serialization Specification from BIE to JSON Schema

Page 5 of 38

1 Glossary

ABIE

Aggregate Business Information Entity per CCS. It can also refer to the ABIE table in the
OAGIS Repository.

ACC

Aggregate Core Component per CCS. It can also refer to the ACC table in the OAGIS
Repository.

ASBIE

Association Business Information Entity per CCS. It can also refer to the ASBIE table in
the OAGIS Repository.

ASBIEP

Association Property Business Information Entity per CCS. It can also refer to the ASBIEP
table in the OAGIS Repository.

ASCC

Association Core Component per CCS. It can also refer to the ASCC table in the OAGIS
Repository.

ASCCP

Association Core Component Property per CCS. It can also refer to the ASCCP table in the
OAGIS Repository.

BBIE

Basic Business Information Entity per CCS. It can also refer to the BBIE table in the
OAGIS Repository.

BBIE_SC

A table in OAGIS repository containing SC restrictions for a BBIE.

BCC

Basic Core Component per CCS. It can also refer to the BCC table in the OAGIS
Repository.

BDT

Business Data Type per CCS

BIE

Business Information Entity per CCS. Conceptually BIE encompasses all types of business
information entities defined below. Within the SRT, a BIE is a profile (contextualized,
subset) of a CC, which is a component within the OAGIS model.

BIE element

A data element in a BIE. For example, if a BIE is the Address component, a BIE element
can be an AddressLine, City, State, etc.

CC

Serialization Specification from BIE to JSON Schema

Page 6 of 38

Core Component per CCS. Conceptually CC encompasses all types of core components
and BDT defined below. Within the SRT, the OAGIS model content is treated/stored as
CCs.

CCS

UN/CEFACT Core Component Specification (formerly, CCTS, Core Component Technical
Specification)

Expression

A syntax-specific representation of a specification (CC or BIE).

GUID

Globally Unique Identifier

JSON or JSON instance

An instantiation of a JSON schema. Note that a JSON schema is also a JSON instance.

JSON schema

A JSON document that conforms to JSON Schema. Note lower-case “s”. Often the
distinction between “JSON schema” and “JSON Schema” can be correctly understood
from the context, but sometimes the explicit distinction is important.

JSON Schema

Note upper-case “s”. JSON Schema specification, JSON Schema standard, or the JSON
Schema standard per jsonschema.org. See “JSON schema” note.

OAGIS component

Any OAGIS BOD, Noun, Subcomponent of Noun, Common Component

OAGIS Model

The canonical representation of OAGIS where BOD and component definitions are
represented with abstractions, reusable components, and full content.

OAGIS Model JSON schemas

This would be the OAGIS Model serialized in JSON schema syntax. This canonical JSON
schemas currently does not exist in an OAGIS nor Score distribution. If needed, such
schemas can be generated from the Score tool.

OAGIS Model XML schemas

This is OAGIS Model expressed/serialized in the Garden of Eden style XML Schema
syntax. In other words, the OAGIS canonical XML schemas as defined in the OAGIS
enterprise edition under the Model folder.

OAGIS Repository

OAGIS specifications in a database management system. It is part of the SRT.

SC

Supplementary Component (of a BDT) per CCS

Score

Score is a new name given to the SRT.

Serialization

Serialization Specification from BIE to JSON Schema

Page 7 of 38

Expression.

SRT

Semantic Refinement Tool. It is a tool for managing the lifecycle of CCs and BIEs.

Standalone OAGIS JSON schemas

The all-inclusive OAGIS JSON schemas of an OAGIS component with the same schema
design pattern as that of the Standalone OAGIS XML schemas. Such schemas are
currently not distributed as part of OAGIS. Conceptually, such schemas can be generated
from Score.

Standalone OAGIS XML schemas

The all-inclusive OAGIS XML schemas of an OAGIS component. At present, standalone
XML schemas are at the BOD level and are distributed in the Standalone folder of OAGIS
enterprise and standard editions.

Syntax independent [X]

Where “X” is “OAGIS Model”, “Model BOD”, “Model Component”, “Standalone
Component”, or “BIE”. OAGIS Model, Model BOD, Model Component, Standalone
Component, and BIE represented via Core Component Specification in the OAGIS
Repository. It is important to note that the terms OAGIS Model, Model BOD, Standalone
Component, and BIE are always used in this abstract, syntax-independent sense in this
specification. To refer to a syntax-specific representation of these concepts, these terms
are suffixed with the name of the particular syntax (expression), e.g., OAGIS Model JSON
schema, BIE JSON schema, BIE XML schema.

2 Conventions

Courier New Font Size 9: Used for Code snippet, Element, Type, Entity name.

“Literal”: Quotation around a string is used for a literal value, JSON key, or JSON key value.

Italicize: Text is italicized for emphasizing purpose.

3 Purpose
The purpose of this document is to describe the JSON schema convention to represent the
BIE. The BIE can be any OAGIS component (including common component or
subcomponent of a noun, noun, or BOD). The purpose of a BIE JSON schema is to provide
precise semantic restrictions of a BIE usage information in a JSON schema while also
simplify the schema structure as much as possible.

A BIE JSON schema is a standalone schema (in OAGIS lingo) where all the content is self-
contained in a single schema file. Three important characteristics of the BIE JSON schema
are as follows.

Serialization Specification from BIE to JSON Schema

Page 8 of 38

First, the BIE JSON schema employs, for the most part, the Russian Doll1 XML schema like
design. In Russian Doll, there is one root element (the BOD) and types are anonymous-
type. In the BIE JSON schema, there is one root element and most types are anonymous
except code list and primitive types.

The objective of the BIE JSON schema is to make the content model as precise as possible.
Using the Russian Doll design allows the same types (e.g., supplier party type, business
data types) used in multiple places within a single BIE to have different contents (or
restrictions). With the BIE JSON schema design, integration interfaces will be able to declare
precise integration requirements.

Second, the schema mainly conveys the data structure definition. It is a pure tree structure
containing only data element nodes. Model features such as extension (inheritance),
restriction, and group are removed and only their data element nodes remain.

The last key characteristic is that the BIE JSON schema implements the Core Component
Specification (CCS) context mechanism. Therefore, the profile schema may contain data
elements which are only subset of the model or traditional OAGIS standalone schema it
corresponds to. In addition, it can contain meta-data (e.g., component identity and version
information), context information, and context specific documentations. The context
information and context specific information describes suitable usage information of the BIE.

4 Scope

A BIE can have many expressions such as XML Schema, JSON Schema, or others. The scope
of this document is limited to the JSON Schema expression.

Below are requirements identified as out-of-scope as of the current version of this
document.

 Schema size optimization
The size of a plain Russian-Doll-based BIE JSON schema can be very large if it contains
thousands of data fields because types are repeatedly defined even for the common
attributes used throughout the schema. The schema can be made more compact by globally
defining types that do not have different content or restriction. In other words, anonymous
types that have a common content model can be globally defined and reused. For example,
if there is no difference in the SupplierParty used in the header and the line of a BIE, only a
single global SupplierPartyType needs to be defined. Similarly, if there is no different
restriction between a TaxAmount and a TotalAmount field, a single global AmountType can be
defined and reused. The actual BIE can be complicated to optimize than these two examples
such as when there are a few Amount typed fields with one content model and there are
other few Amount typed fields with another content model and so on.

At present, the working group member see no need for such optimization as BIEs are
typically small. Therefore, the optimization to make the BIE most compact, yet precise, is
not in scope of the current specification. The current specification only reduces the size of
the profile BIE by using global types for code list definitions and for OAGIS-defined built-in

1 http://www.oracle.com/technetwork/java/design-patterns-142138.html

http://www.oracle.com/technetwork/java/design-patterns-142138.html

Serialization Specification from BIE to JSON Schema

Page 9 of 38

primitive types (the naming convention, enforced in the Score Tool, makes the code list and
built-in type names unique).

 Advance semantic restriction
There are also requirements from the user community to represent more complicated
semantic restrictions such as dependencies between the values of data elements. Although
such capability does not exist in XML Schema, JSON Schema has provisions for that kind of
restrictions/validations. However, this is out of scope for this version of the specification. We
documented here some of the major requirements for consideration in the future versions of
the specification.

1. To represent IF-THEN type of rules for conditional restrictions across data elements.
2. To represent specific values needed in a particular occurrences of a repeated data

element, e.g., when two IDs of the Party element are needed; and the requirement is
that one is the DUNS type of ID and the other is the government issued Tax ID.

 XML-JSON round-tripping
The working group has attempted at creating a JSON schema that allows for round-tripping
between XML and JSON syntaxes; however, there are a few major issues, particularly with
the translation from JSON back to XML. One of the major issues is the loss of the sequence
of elements in JSON. The other issue is that JSON does not distinguish element and
attribute; every data is represented as a key and value. Additional meta-data, such as
namespace, sequence, object type, need to be populated in the generated JSON or JSON
schema in order that a round tripping is possible. The group did not see an immediate need
for such a round-tripping; therefore, the requirement is considered out-of-scope in this
version. Preferences were given to the simple and compact design.

 Matching primitives with XML schema primitives
The serialization will use only JSON schema built-in type and its related constraint keywords
(e.g., “format”, “multipleOf”) to represent the primitive types used in the OAGIS Model.
Only the duration JSON Schema serialization use the pattern keyword. Therefore, the value
space of the JSON Schema serialization does match that of the XML Schema serialization.

The pattern keyword in JSON schema that uses the regular expression has been tried to
match the lexical and value spaces with the primitives used in the OAGIS model. However,
more testing is needed. The current mapping between the primitives used in OAGIS model
and JSON Schema primitives will be provided in section 8.6.

 BIE meta-data
Most BIE meta-data such as business context, dictionary entry details, and based core
component data are out of scope in this version.

 OAGIS Model JSON schemas
Generating a set of JSON schemas that reflect the OAGIS model is out of scope in this
document.

 Full BIE JSON schema for importing/exporting including CC references
Generating full a BIE schema that may be used for export/import from/into an OAGIS
repository is out of scope of the current version.

Serialization Specification from BIE to JSON Schema

Page 10 of 38

 Open API Generation
The OAGi JSON/Mobile working group considers the functionality to generate Open API
specification. However, this has been deferred to future effort.

5 Relevant Specifications

Core Component
Specification Version 3.0

https://www.unece.org/cefact/codesfortrade/ccts_index.html

JSON Schema Core, Draft-
05

https://tools.ietf.org/html/draft-wright-json-schema-00

JSON Schema Validation
(for keywords), Draft-05

https://tools.ietf.org/html/draft-wright-json-schema-validation-00

Open API Specification
(OAS) Initiative

https://github.com/OAI/OpenAPI-
Specification/blob/master/README.md

OAS version 3.0.1 https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.1.md

OAGIS Release 10.X
Naming and Design Rules

http://www.oagi.org/oagi/downloads/ResourceDownloads/U
NCEFACT_XML_NDR_V3p0.pdf

Overview of the OAGIS
Repository, a Component of
the Score Tool

https://oagi.org/OurCommunity/WorkingGroups/tabid/149/
Default.aspx

OAGIS Repository Data
Model

https://drive.google.com/open?id=1hqu7P7_fVQ4NXk6ZQg
xMbH3qmha6gfXb

RFC 2119 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL
NOT, SHOULD,

SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when
they appear in this

document, are to be interpreted as described in Internet
Engineering Task Force

(IETF) Request For Comments (RFC) 2119.

https://www.unece.org/cefact/codesfortrade/ccts_index.html
https://tools.ietf.org/html/draft-wright-json-schema-00
https://tools.ietf.org/html/draft-wright-json-schema-validation-00
https://github.com/OAI/OpenAPI-Specification/blob/master/README.md
https://github.com/OAI/OpenAPI-Specification/blob/master/README.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
http://www.oagi.org/oagi/downloads/ResourceDownloads/UNCEFACT_XML_NDR_V3p0.pdf
http://www.oagi.org/oagi/downloads/ResourceDownloads/UNCEFACT_XML_NDR_V3p0.pdf
https://oagi.org/OurCommunity/WorkingGroups/tabid/149/Default.aspx
https://oagi.org/OurCommunity/WorkingGroups/tabid/149/Default.aspx
https://drive.google.com/open?id=1hqu7P7_fVQ4NXk6ZQgxMbH3qmha6gfXb
https://drive.google.com/open?id=1hqu7P7_fVQ4NXk6ZQgxMbH3qmha6gfXb

Serialization Specification from BIE to JSON Schema

Page 11 of 38

6 Tools Used for Creation of This Document
https://www.jsonschemavalidator.net/

7 Overall Design
The BIE JSON schema generally follows the OAGIS Release 10.X Naming and Design Rules
(see Relevant Specification) except those described in this section. The design rules
described in this section shall override relevant rules in the OAGIS Release 10.X Naming and
Design Rules.

The overall schema design objective is for it to be simple/friendly yet provides precise
semantic constraints. Therefore, the Russian Doll JSON schema design pattern is used and
layers of type inheritances (extension and restriction) are reduced to a single type
definition; and group wrappers exist in the OAGIS model are skipped. These overall design
details are explained in this section.

 Compatibility
A BIE JSON schema shall be compatible with the corresponding OAGIS Model JSON schema.
In other words, JSON instances valid according to a BIE JSON schema shall be valid
according to the corresponding Model JSON schema.

Rule 1: JSON instances valid against a BIE JSON schema shall be valid against the corresponding
element in the Model JSON schema.

It should be noted that at this time the Model JSON schema only virtually exists. Rule 1 is
programmatically compliant by the tool generating it.

 JSON Schema Design Pattern
The BIE JSON schema employs the Russian Doll design pattern (i.e., local elements and
anonymous types). Only code lists, agency ID lists, and primitives are defined globally and
are reusable. Other specifics of this pattern are specified in section 8.

 Plural
Although the API community commonly use plural terms for array, after several discussions
in the OAGi JSON Mobile WG it was decided that pluralizing the name for JSON array would
not be adopted. The reasons are 1) some English words, common acronyms or specific
names (e.g., SCAC, UPC) do not have plural form and may cause confusion; and 2) OAGIS
canonical names are in singular complying with UN/CEFACT NDR and automatically
pluralizing these names are not reliable due to #1.

 Lower Camel Case
Lower camel case is commonly use in JSON developer communities. The OAGi JSON mobile
WG decided to follow that. See subsequent sections for more details on how OAGIS
canonical names are automatically converted into lower Camel Case throughout JSON
Schemas.

https://www.jsonschemavalidator.net/

Serialization Specification from BIE to JSON Schema

Page 12 of 38

 Meta Schema
A meta-schema must be declared according to Rule 2. Example 1 below shows the meta-
schema declaration.

Rule 2: Meta schema declaration shall be made at the top of JSON schema via the “$schema” key. It
SHALL point to draft-04 meta-schema.

{ "$schema": "http://json-schema.org/draft-04/schema#" }
Example 1: Schema declaration

 Root Property Key
A BIE JSON schema generally contains only one root key representing the top-level ASBIEP
the user selected for serialization. All other property keys and object definitions are local
except the type definitions for primitives, code lists, and agency identifier lists used in the
BIE. Top-level ASBIEP shall be generated according to Rule 3.

Rule 3: A property named after the top-level ASBIEP selected for the schema serialization shall be
specified at the root of the BIE JSON schema. Property term of the ASBIEP shall be used as the property
name following the naming convention in Rule 4. The content model of the property shall be defined as a
JSON object or an array of a JSON object following the content model of the top-level ABIE that is
associated with the top-level ASBIEP. Whether JSON object or an array of a JSON object is generated is
an option selected by the user on the SRT user interface.

Rule 4: Names of all generated JSON properties shall use lower-camel case. The term Identifier shall
be kept as Identifier instead of using the ID abbreviation. A token in the Object Class Term, Property
Term, Representation Term, or Data Type Term that is an acronym, i.e., spelled using all upper case in
the OAGIS repository, shall be converted to camel case. For example, a property term “UPC Code” or
“Product UPC Code” shall be generated in JSON schema as “upcCode”or “productUpcCode”,
respectively.

Rule 5: When the schema package option is not selected or when the schema package option is selected
but there is only one top-level ASBIEP selected, each top-level ASBIEP shall be serialized into a separate
schema file. In addition, the root schema shall have the “required” key instantiated reflecting that the
corresponding JSON property is required. On the other hand, if the schema package option is selected
and multiple top-level ASBIPs are selected, the root schema shall have multiple JSON properties
corresponding to the top-level ASBIEPs serialized; and the “required” key shall not be instantiated.

Example 2 below illustrates the “showInspectionOrder” top-level ASBIEP expressed in JSON
schema. In this example, the user did not select an array option; hence, the “type” of
“showInspectionOrder” is simply an object (Example 3 shows the case when the array option
is selected). The corresponding top-level ABIE has two required properties that are
“applicationArea” and “dataArea” and an optional property that is
“systemEnvironmentCode”. The primitive “token”, code list “systemEnvironmentCode”, and
agency identifier list “schemeIdentifierList” are defined globally in the reusable JSON
definition block at the bottom.

Serialization Specification from BIE to JSON Schema

Page 13 of 38

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "required": ["showInspectionOrder"],
 "additionalProperties": false, //This is needed because the default is true.
 "properties": {
 "showInspectionOrder": {
 "description": "Top-level ABIE context definition.",
 "type": "object",
 "required": ["applicationArea", "dataArea"],
 "additionalProperties": false,
 "properties": {
 "systemEnvironmentCode": {
 "description": "BBIE context definition.",
 "type": "object",
 "required": ["content"],
 "additionalProperties": false,
 "properties": {
 "content": {
 "$ref": "#/definitions/systemEnvironmentCodeList"
 },
 “listAgencyIdentifier”: {
 “type”: “string”
 }
 }
 },
 "applicationArea": {
 "description": "ASBIE context definition.",
 "type": "object",
 //Further specification of the applicationArea property would be given here.
 },
 "dataArea": {
 "description": "ASBIE context definition.",
 "type": "object",
 //Further specification of the dataArea property would be given here.
 }
 }
 }
 "definitions": {
 "schemeIdentifierList": {
 "type":"string",
 "enum": ["Internal", "DUNS", "GS1"]
 },
 "systemEnvironmentCodeList": {
 "type":"string",
 "enum": ["Test", "Production"]
 },
 "token": {
 "type": "string"
 }
 }
}
Example 2: Root property key with the regular object option

Serialization Specification from BIE to JSON Schema

Page 14 of 38

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "required": ["showInspectionOrder"],
 "additionalProperties": false, //This is needed because the default is true.
 "properties": {
 "showInspectionOrder": {
 "description": "Top-level ABIE context definition.",
 "type": "array",
 “items”: {
 “type”: “object”,
 "required": [
 "applicationArea",
 "dataArea"
],
 "additionalProperties": false,
 "properties": {
 "systemEnvironmentCode": {
 <!--Same as in Example 2 -->
 },
 "applicationArea": {
 <!--Same as in Example 2 -->
 },
 "dataArea": {
 <!--Same as in Example 2 -->
 }
 }
 }
 }
 }
 "definitions": {
 <!--Same as in Example 2 -->
 }
}
Example 3: Root property key with array option

Schema package is commonly used for supporting Web Services deployment. Example 4
below illustrates the case when multiple top-level ASBIEPs including “bom”,
“workOrderHeader”, and “workOrder” are selected and the schema package option is
enabled.

Serialization Specification from BIE to JSON Schema

Page 15 of 38

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "additionalProperties": false,
 "properties": {
 "bom": {
 "type": "object",
 <!-- Content model of the BOM goes here. -->
 },
 "workOrderHeader": {
 "type": "object",
 <!-- Content model of the work order header goes here. -->
 },
 "workOrder": {
 "type": "object",
 <!-- Content model of the work order goes here. -->
 }
 }
}
Example 4: JSON schema illustrating the case when multiple BIEs are selected for expression generation and the
schema package option is selected

 Forgoing the Type Inheritance and Attribute Designation.
Type inheritances exists in the CC realm are forgone in the profile BIE JSON schema (this is
also the way the BIE entities are represented in the OAGIS repository database – no
inheritance. In addition, there is also no notion of type inheritance, i.e., extension, in JSON
schema).

JSON property also does not differentiate between meta-property or attribute and regular
property of an object like in XML schema (xsd:attribute and xsd:element). Since the
ability to roundtrip between JSON and XML is out of scope, this specification does not
specify a special character or character pattern to designate a property as an attribute. The
benefits of this design are avoiding potential special character conflict with processors and
strange/confusing property name, e.g., “attribute-typeCode”, “attribute-attribute”.

Examples below illustrate these for the cases of forgoing the complex content extension,
simple content restriction, simple type restriction, and attribute designation.

Complex content type extension example

Below is a snippet of the model specification of the Party element (ASCCP). The associated
PartyType complex type (ACC) has two inheritances, i.e., it extends the PartyBaseType ACC,
which in turn extends the PartyIdentificationType ACC in the model specification.

<xsd:complexType name="PartyIdentificationType" id="oagis-id-00012d4229984113976240713ed38906">
 <xsd:sequence>
 <xsd:element ref="ID" id="oagis-id-00022d4229984113976240713ed38906" minOccurs="0" maxOccurs="unbounded" />
 <xsd:element ref="PartyIDSet" id="oagis-id-00032d4229984113976240713ed38906" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="typeCode" id="oagis-id-00042d4229984113976240713ed38906" type="CodeType_1E7368"
use="optional"/>

Serialization Specification from BIE to JSON Schema

Page 16 of 38

 <xsd:attribute name="role" id="oagis-id-00052d4229984113976240713ed38906" type="PartyRoleCodeContentType"
use="optional"/>
</xsd:complexType>
<xsd:complexType name="PartyBaseType" id="oagis-id-00062d4229984113976240713ed38906" abstract="true">
 <xsd:complexContent>
 <xsd:extension base="PartyIdentificationType">
 <xsd:sequence minOccurs="1" maxOccurs="1">
 <xsd:element ref="AccountID" id="oagis-id-00072d4229984113976240713ed38906" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element ref="Name" id="oagis-id-00082d4229984113976240713ed38906" minOccurs="0"
maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="PartyType" id="oagis-id-00092d4229984113976240713ed38906" abstract="false">
 <xsd:complexContent>
 <xsd:extension base="PartyBaseType">
 <xsd:sequence minOccurs="1" maxOccurs="1">
 <xsd:element name="Extension" id="oagis-id-00102d4229984113976240713ed38906" type="PartyExtensionType"
minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
</xsd:complexType>
<xsd:element name="Party" id="oagis-id-00112d4229984113976240713ed38906" type="PartyType">

Example 5 below shows how the Party element (ASBIEP) shall appear inside a BIE JSON
schema (assuming the Party element is a child under the PurchaseOrderHeader element
(ASBIEP) and its min and max cardinalities are one). Notice that there is no type extension
under the “Party” JSON expression, the content of the two based types in the model are
merged into the Party’s object, i.e., all children of the two based types in the model are
direct children properties of the “Party” object.

Notice also that the typeCode and role attributes in the model (in this case they are BBIE)
are expressed as JSON Schema properties just like any other BBIE or ASBIE.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "required": ["purchaseOrderHeader"],
 "additionalProperties": false,
 "properties": {
 "purchaseOrderHeader": {
 "description": "Context definition of the purchaseOrderHeader top-level ABIE.",
 "type": "object",
 "required": ["Party"],
 "additionalProperties": false,
 "properties": {
 "party": {
 "description": "Context definition of purchaseOrderHeader’s party ASBIE.",
 "type": "object",
 "additionalProperties": false,

Serialization Specification from BIE to JSON Schema

Page 17 of 38

 "properties": {
 “typeCode”: {
 // specification of the typeCode attribute.
 },
 “role” {
 // specification of the role attribute.
 "identifier": {
 // specification of the identifier.
 },
 "partyIdentifierSet": {
 // specification of the party identifier set.
 },
 "accountIdentifier": {
 // specification of the account identifier set.
 },
 "name": {
 // specification of the name
 },
 "extension": {
 // specification of the extention.
 }
 }

 }
 }
 }
 }
 }
}
Example 5: Forgoing attributing distinction and complex content inheritance hierarchy

Simple content type extension example

In the example below the Name element (BCCP) is bound to OpenNameType (BDT).
OpenNameType is defined in the OAGIS Model with two inheritances through xsd:extension
based on NameType BDT and NameType_02FC2Z (BDT) as follows.

<xsd:complexType name="OpenNameType" id="oagis-id-3cd82d4229984113976240713ed38906">
 <xsd:simpleContent>
 <xsd:extension base="NameType">
 <xsd:attribute name="typeCode" type="xsd:token" use="optional" id="oagis-id-
82d03758dfd844bea1676759edf0d653"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="NameType" id="oagis-id-bf66e0afea2c4c2da7bc69af14ca23c9">
 <xsd:simpleContent>
 <xsd:extension base="NameType_02FC2Z">
 <xsd:attribute name="sequenceNumber" type="xsd:integer" id="oagis-id-
84fa20db74b942449e1885cff79b24df">
 </xsd:attribute>

Serialization Specification from BIE to JSON Schema

Page 18 of 38

 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:complexType name="NameType_02FC2Z" id="oagis-id-8ef2aeaecfa645088c4bf4b424905596">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="languageCode" type="clm56392A20081107_LanguageCodeContentType"
use="optional" id="oagis-id-42e59d799de147b8ab49c8a27ec85ff1">
 </xsd:attribute>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>
<xsd:element name="Name" type="OpenNameType">

The Name element (BBIEP) shall be expressed in the BIE JSON schema fragment as shown
in Example 6.

{
 “name”: {
 “type”: “object”,
 “required”: [“content”],
 “addtionalProperties”: false,
 “properties”: {
 “content”: {
 “$ref”: “#/definitions/string”,
 },
 “typeCode”: {
 “$ref”: “#/definitions/token”,
 },
 “sequenceNumber”: {
 “$ref”: “#/definitions/integer”
 }
 “languageCode”: {
 “$ref”: “#/definitions/clm56392A20081107_LanguageCode”
 }
 }
 }
 "definitions": {
 "string": {
 "type":"string",
 },
 "token": {
 "type":"string",
 },
 " clm56392A20081107_LanguageCode": {
 "type":"string",
 "enum": ["US-EN", "TH"]
 },
 "integer": {
 "type": "number",
 “multipleOf”: 1
 }
 }
}

Serialization Specification from BIE to JSON Schema

Page 19 of 38

Example 6: Forgoing simple content inheritance hierarchy

Notice the followings:

1. The “content” property is generated for capturing the instance value of all BDTs (see
more detail about BDT expression in section 8.5), which is also the instance value of the
BBIEP.

3. The type hierarchy from OpenNameType to NameType_02FC2Z was reduced. All attributes
from the two based types become direct properties of the “name” object. Therefore, the
“content” property is typed string.

4. In the profile BIE expression, code lists are always defined using a global JSON schema
definitions (there is no name clashing because Score ensures that combination of the
code list’s agency ID, list ID, and version ID are unique. See section 8.7 for complete
detail to how the code list type shall be generated).

5. The example also illustrates how an integer type is represented in JSON schema. See
section 8.6 for how XML schema-based primitive types are mapped to JSON schema
type.

Simple type restriction example

In the example below, the CreationDateTime element (BCCP) uses DateTimeType (BDT) in the
model XML schema. DateTimeType has two inheritances through a restriction on
DateTimeType_AD9DD9 (BDT), which is in turn a union of a number of types, all of which are
based on xsd:token.

<xsd:element name="CreationDateTime" type="DateTimeType" id="oagis-id-4ba8e6b8c9fb46cda2724a1770fa9baf">
</xsd:element>
<xsd:simpleType name="DateTimeType" id="oagis-id-dd0c8f86b160428da3a82d2866a5b48d">
 <xsd:restriction base="DateTimeType_AD9DD9"/>
</xsd:simpleType>
<xsd:simpleType name="DateTimeType_AD9DD9" id="oagis-id-a5cfd20385314a63afc1ffcf6357a08b" final="union">
 <xsd:union memberTypes=" xbt_CenturyType xbt_DateType xbt_DayOfWeekType …… xbt_YearWeekDayTimeType
xbt_YearWeekDayTimeUTCType xbt_YearWeekDayTimeUTCOffsetType">
 </xsd:union>
</xsd:simpleType>
<xsd:simpleType name="xbt_CenturyType" id="oagis-id-433b017552a14828a92821fd2540d790">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="[0-9]{2}"/>
 </xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="xbt_YearWeekDayTimeUTCOffsetType" id="oagis-id-bd2e6cf3f01a4a90b9ec141fc908f531">
 <xsd:restriction base="xsd:token">
 <xsd:pattern value="[0-9]{4}-W(0[1-9]|[1-4][0-9]|5[0123])-[1-7]T((([01][0-9]|2[0-3]):[0-5][0-9]:[0-5][0-9](|(\.[0-
9]+)))|(24:00:00))([\+|\-]([0-1][0-9]|2[0-3]):[0-5][0-9])"/>
 </xsd:restriction>
</xsd:simpleType>

The element CreationDateTime (BBIEP) would appear in the BIE JSON schema as shown in
Example 7, assuming that the user constrained CreationDateTime to
xbt_YearWeekDayTimeUTCOffsetType in the Score tool.

{
 "creationDateTime": {

Serialization Specification from BIE to JSON Schema

Page 20 of 38

 "$ref": "/definitions/xbt_YearWeekDayTimeUTCOffsetType",
 },
 "definitions": {
 "xbt_YearWeekDayTimeUTCOffsetType": {
 "type":"string"
 }
 }
}
Example 7: Forgoing simple type restriction hierarchy

Notice the followings:
1. Because CreationDateTime has no attribute, it is not serialized as a JSON object with the

“content” property like the case of Name in Example 6. See more about how a BDT is
serialized in section 8.5.

6. xbt_YearWeekDayTimeUTCOffsetType is defined as xsd:token. But xsd:token is
eventually mapped to JSON string type, its definition immediately has the string type.
See section 8.6 for the type mapping.

 Simplified BDT
The BDT serialization is designed to be simple when there is no supplementary component
(SC) enabled in the BIE. Taking the Name BDT in Example 6 for instance, if the BIE that
uses the Name BDT did not enable any of its SCs including “typeCode”, “sequenceNumber”,
and “languageCode”, its serialization would not be a JSON Object but a simple property as
shown in Example 8 below.

{
 “name”: {
 “$ref”: “#/definitions/string”,
 },
 "definitions": {
 "string": {
 "type":"string",
 }
 }
}
Example 8: An example serialization of a BDT with no SC enabled

 Forgoing the xsd:group
An xsd:group in the model specification is imported as an ACC and an ASCCP. However,
when a BIE which uses the xsd:group is created, there is no ABIE nor ASBIEP created which
is corresponding to the ACC and ASCCP xsd:group. Instead, associations are established
directly between the parent of the group and children of the group. The snippet below
shows FreeFormTextGroup example in the model XML Schema representation.

<xsd:element name="ProductionOrderHeader" type="ProductionOrderHeaderType" id="oagis-id-
111596b8c9fb46cda2724a1770fa1115"/>
<xsd:complexType name="ProductionOrderHeaderType" id="oagis-id-111696b8c9fb46cda2724a1770fa1116">
 <xsd:sequence>
 <xsd:element ref="ID" id="oagis-id-111896b8c9fb46cda2724a1770fa1118" minOccurs="0" maxOccurs="1"/>
 <!-- some other elements here, not shown -->
 <xsd:group ref="FreeFormTextGroup" id="oagis-id-111696b8c9fb46cda2724a1770fa1116"/>

Serialization Specification from BIE to JSON Schema

Page 21 of 38

 <!-- some other elements here, not shown -->
 </xsd:sequence>
</xsd:complexType>
<xsd:group name="FreeFormTextGroup" id="oagis-id-111796b8c9fb46cda2724a1770fa1117">
 <xsd:sequence>
 <xsd:element ref="Description" id="oagis-id-111896b8c9fb46cda2724a1770fa1118" minOccurs="0"
maxOccurs="unbounded"/>
 <xsd:element ref="Note" id="oagis-id-111
1996b8c9fb46cda2724a1770fa1119" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>
</xsd:group>

The element ProductionOrderHeader (ASBIEP) would appear in the BIE JSON schema
fragment as shown in Example 9. Notice that there is no free form text group in the
fragment.

{
 "productionOrderHeader": {
 "description": "production order header description",
 "type": "object",
 "additionalProperties": false,
 "properties": {
 “identifier”: {
 ……
 }
 "anotherChildrenOfProductionOrderHeader": {
 …….
 },
 “description”: {
 “description”: “content model of description in the free form text group would continue
below.”,
 ………..
 },
 “note”: {
 “description”: “content model of note in the free form text group would continue below.”,
 ………..
 }
 }
 }
}
Example 9: Forgoing the group construct

 The “additionalProperties” Key
The “additionalProperties” key shall be present with the value true, in all JSON object
definition with one exception. The value shall be true only when there is an explicit open
content in the model such as when xsd:any is used in the extension. The xsd:any XML
Schema construct is represented as “Any Property” ASCCP (and hence ASBIEP) in the
repository. Rule 6 formalizes this serialization behavior.

Rule 6: The “additionalProperties” key with a value false must be specified for all JSON schema object
definition except when “Any Property” ASCCP or ASBIEP is encountered within the extension element,
then the value must be true.

Serialization Specification from BIE to JSON Schema

Page 22 of 38

 JSON Array
JSON array shall be used when max cardinality of an association (i.e., ASBIE, BBIE, and
BBIE SC) is more than 1 or unbounded. Rule 7 below sums up the overall design of the
JSON array use.

Rule 7: JSON array shall be used when max cardinality of an association (i.e., ASBIE, BBIE, and BBIE
SC) is more than 1 or unbounded. Its “items” key shall be a JSON schema reflecting the content model of
association as described in relevant subsections in section 8. The array shall not declare
“additionalItems” key. And its “minItems” and “maxItems” key reflects the min and max cardinalities of the
associations, i.e., if min cardinality is zero; “minItems” is not declared; if min cardinality is 1 or more,
“minItems” carries the same value; if max cardinality is 0, the association shall not be serialized; if max
cardinality is 1 or more, “maxItems” carries the same value; if max cardinality is unbounded, “maxItems” is
not declared.

8 Normative Mapping of OAGIS Repository Entities to JSON Schema
Constructs

This section formally specifies the maps from table entities (which mostly correspond to CCS
entities) in the OAGIS Repository to JSON schema constructs (see the OAGIS Repository
Data Model for reference). It indicates how the BIE JSON schema shall be generated. This
section includes only the map related to data structure and semantic documentation. Meta-
data and context information are out of scope in this version.

In this section, terms with all-cap and under-bar are typically referred to database table or
column within the Score tool.

When serializing a BIE, the user selects one or more top-level ASBIEPs to serialized. There
are the following options the user can configure the serialization.

1. The user has the option to include all top-level ASBIEPs in the same schema, namely the
schema package option, or to put each of them in individual schemas.

2. The user has the option to serialize each of the selected top-level ASBIEP as an array.
3. The user has the option to include BIE Documentation in the schema. Throughout the

subsections, unless otherwise specifically noted, the “description” keyword is generated
only when the user selects the option to include “BIE Documentation”.

 Top-level ASBIEP
Top-level ASBIEP is serialized as the root schema. The root schema shall have the following
JSON Schema keywords populated as follows:

1. The “required” keyword: If the schema package option is selected and there is only one
top-level ASBIEP included or if the schema package option is not selected (serialize one
top-level BIE per schema), the root schema shall have the JSON Schema “required”
keyword indicating the JSON property corresponding to the top-level ASBIEP is
mandatory. Conversely, if the schema package option is selected and there are multiple
top-level ASBIEPs selected, no “required” keyword shall be present in the root schema.
Name of the JSON property corresponding to the top-level ASBIEP shall follow Rule 4
using the top-level ASBIEP’s property term.

2. The “additionalProperties” keyword with the value false.
3. The “properties” keyword that is an object containing a subschema or subschemas

representing the top-level ABIE or top-level ABIEs used by the corresponding top-level
ASBIEP or top-level ASBIEPs.

Serialization Specification from BIE to JSON Schema

Page 23 of 38

4. The “definitions” keyword that is an object containing subschemas of primitive types,
code lists, and agency identification lists used across the top-level ASBIEPs.

Lemma 1: An ASBIEP is derived from ASCCP; hence ASBIEP’s property term is the same as
ASCCP’s property term. An ASCCP is imported from a global or local element declaration
that has a complex content in the OAGIS Model XML schema (note that only DataArea is a
local element in the OAGIS Model XML schema). An ASBIEP uses an ABIE.

 Top-level ABIE
Top-level ABIE is an ABIE used by the top-level ASBIEP. A top-level ABIE is serialized as a
subschema specifying the content model of the ASBIEP using it as defined in clause 8.1 #3.
Name of the subschema shall be generated from the top-level ASBIEP’s property term
following Rule 4. The subschema shall include the following JSON Schema keywords:

1. The “type” keyword:
1.1. With the value “array”, when the top-level ASBIEP is requested to be generated as

an array;
1.2. Otherwise, with the value “object”.

2. The “description” keyword with the value that is the top-level ABIE’s (context)
DEFINITION.

3. If the “type” keyword is “object”:
3.1. The “required” keyword with the value that is an array of the top-level ABIE’s

children ASBIEs and BBIEs whose min cardinality value is one or more. The array
contains names of JSON properties serialized according to the ASBIEPs and BBIEPs,
respectively, used by those ASBIEs and BBIEs. Names of ASBIEPs and BBIEPs are
serialized according to Rule 4 using their property terms.

3.2. The “additionalProperties” keyword with the value false.
3.3. The “properties” keyword that is an object containing subschemas of its ASBIE (8.3)

and BBIE (8.4) children. If the ASBIE’s and BBIE’s USED flag is false or
MAX_CARDINALITY is zero, they are not serialized.

4. If the “type” keyword is “array”:
4.1. The “items” keyword that is an object containing the following keywords:

4.1.1. The “type” keyword with the value “object”.
4.1.2. The “required” keyword with the value that is an array of the top-level ABIE’s

ASBIEs and BBIEs children whose min cardinality value is one or more. The
array contains names of JSON properties serialized according the ASBIEPs and
BBIEPs, respectively, used by those ASBIEs and BBIEs. Names of the ASBIEPs
and BBIEPs are serialized according to Rule 4 using their property terms.

4.1.3. The “additonalProperties” keyword with the value false.
4.1.4. The “properties” keyword that is an object containing subschemas of the top-

level ABIE’ ASBIE (8.3) and BBIE (8.4) children. However, if an ASBIE’s or
BBIE’s USED flag is false or MAX_CARDINALITY is zero, it is not serialized.
Name of each subschema shall be generated from the property term of the
ASBIEP or BBIEP used by the respective ASBIE or BBIE children following Rule
4.

Lemma 2: An ABIE is derived from an ACC. An ACC is imported from a global complex type
declaration with complex content in the OAGIS Model XML schema. An ABIE consists of a
number of children associations, each of which, can be an ASBIE or a BBIE.

Serialization Specification from BIE to JSON Schema

Page 24 of 38

 ASBIE and Its ASBIEP and ABIE
An ASBIEP that is used by an ASBIE is a non-top-level ASBIEP. The non-top-level ASBIEP,
in turn, uses an ABIE (in this case the ABIE is a non-top-level ABIE). The ABIE again
consists of children associations (ASBIEs and BBIEs) as described in Lemma 2.

For example, if a top-level ASBIEP is a BOM, there is also a BOM top-level ABIE and a child
non-top-level ASBIEP can be BOM Header. That means there is an ASBIE that is an
association from BOM ABIE to the BOM Header ASBIEP. The BOM Header non-top-level
ASBIEP uses a BOM Header non-top-level ABIE (note that ASBIEP and ABIE happen to have
the same name, BOM Header, but they are different entities). The BOM Header ABIE again
consists of children ASBIEs that are associations to ASBIEPs such as Status, Location and
children BBIEs that are associations to BBIEPs such as Identifier and Document Date Time.
Such relations repeat down the hierarchy.

The information from the ASBIE and its non-top-level ASBIEP and ABIE is serialized as a
property subschema within the “properties” keyword of its parent ABIE as defined in clause
8.2 #0 and #0 and clause 8.3 #0 and #0. Name of the property (i.e., name of the
subschema) shall follow Rule 4 using the property term from the respective ASBIEP. The
subschema shall have the following keywords:

1. The “type” keyword:
1.1. If max cardinality of the ASBIE is more than 1 or unbounded:

1.1.1. The value is “array”, if the ASBIE is not nillable.
1.1.2. The value is [“array”, null], if the ASBIE is nillable.

1.2. Otherwise:
1.2.1. The value is “object”, if the ASBIE is not nillable.
1.2.2. The value is [“object”, null], if the ASBIE is nillable.

2. The “description” keyword with the value that is the ASBIE’s (context) Definition.
3. If the “type” keyword contains “object”:

3.1. The “required” keyword with the value that is an array of the ABIE’s children ASBIEs
and BBIEs whose min cardinality value is one or more. The array contains names of
JSON properties, serialized according to the ASBIEPs and BBIEPs, respectively, used
by those children ASBIEs and BBIEs. Names of the ASBIEPs and BBIEPs are
serialized according to Rule 4 using their property terms.

3.2. The “additonalProperties” keyword with the value false; except when the ASBIEP is
Any Property, the value shall be true and stop here.

3.3. The “properties” keyword that is an object containing subschemas of the ABIE’s
ASBIEs (8.3) and BBIEs (8.4) children. If the ASBIE’s and BBIE’s USED flag is false
or MAX_CARDINALITY is zero, they are not serialized.

4. If the “type” keyword contains “array”:
4.1. The “minItems” and “maxItems” keys with the values following Rule 7.
4.2. The “items” keyword that is a subschema containing the following keywords:

4.2.1. The “type” keyword with the value “object”.
4.2.2. The “required” keyword with the value that is an array of the ABIE’s ASBIEs

and BBIEs children whose min cardinality value is one or more. The array
contains names of JSON properties serialized according to the ASBIEPs and
BBIEPs, respectively, used by those ASBIEs and BBIEs. Names of ASBIEP and
BBIEP are serialized according to Rule 4 using their property terms.

4.2.3. The “additonalProperties” keyword with the value false; except when the
ASBIEP is Any Property, the value shall be true and stop here.

4.2.4. The “properties” keyword that is an object containing subschemas of the
ABIE’s children ASBIE (8.3) and BBIE (8.4). If the ASBIE’s and BBIE’s USED flag
is false or MAX_CARDINALITY is zero, they are not serialized.

Serialization Specification from BIE to JSON Schema

Page 25 of 38

Lemma 3: An ASBIE is derived from an ASCC. An ASCC is an association from an ACC to an
ASCCP. An ASCC is imported from an XML Schema element reference or local element
within an ACC in the OAGIS Model XML schema.

Corollary 3.1: An ASBIE is an association from an ABIE to an ASBIEP. The ASBIEP in turn
use another ABIE with or without a qualification. The qualification is the ASBIEP’s property
term. However, if there is no qualification, the ASBIEP property term is same as the ABIE
object class term.

 BBIE and Its BBIEP
A BBIE and the BBIEP it associates to are together serialized as a property subschema
within the “properties” keyword of its parent ABIE as defined in clause 8.2 #3.3 and #4.1.4
and clause 8.3 #3.3 and #4.2.4. Name of the property (i.e., name of the subschema) shall
follow Rule 4 using the BBIEP’s property term. The subschema shall have the following
keywords:

1. If max cardinality of the BBIE is more than 1 or unbounded,
1.1. The “type” keyword with the value “array”, if the BBIE is not nillable.
1.2. The “type” keyword with the value [“array”, null], if the BBIE is nillable.

2. Otherwise:
2.1. When the BBIE has no used BBIE_SC,

2.1.1. the “$ref” keyword with the value pointing to a JSON definition subschema
according to one of the BBIE’s primitive columns2 that is not null. JSON
definition subschemas are the serialization of all primitives (8.6), code lists
(8.7), or agency. identification lists (8.7) used within the serialized top-level
ABIEs.

2.1.2. If the BBIE has a default value specified, a keyword “default” with the value
according to the BBIE’s default value.

2.1.3. If the BBIE has a fixed value specified, a keyboard “const” with the value
according to the BBIE’s fixed value.

2.2. Otherwise (i.e., when the BBIE has at least one BBIE_SC), the “type” keyword with
the value “object”.

3. The “description” keyword with the value that is the BBIE’s (context) DEFINITION.
4. If the “type” keyword is “object”:

4.1. The “required” keyword with the value that is an array of “content” and names of
BBIE_SCs whose min cardinality value are one. Names of BBIE_SC are serialized
according to Rule 4. The serialized name shall be the truncated concatenation of the
BBIE_SC’s property term and representation term. However, when the
representation term is ‘Text’, it is dropped.

4.2. The “additonalProperties” keyword with the value false.
4.3. The “properties” keyword that is an object containing the following subschemas:

4.3.1. “content” subschema that is a reference ($ref) to a JSON definition
subschema according to one of the BBIE’s primitive columns that is not null.
JSON definition subschemas are the serialization of all primitives (8.6), code
lists (8.7), or agency identification lists (8.7) used within the serialized top-level
ABIEs. In addition, the content subschema shall contain “default” and “const”
keywords with the value according to the BBIE’s default value and fixed value,
respectively, if they are specified.

2 BBIE’s primitive columns include BDT_PRI_RESTRI_ID, CODE_LIST_ID,
AGENCY_ID_LIST_ID columns.

Serialization Specification from BIE to JSON Schema

Page 26 of 38

4.3.2. Subschemas with the names corresponding to the used BBIE_SCs (section
8.5) whose max cardinality is not zero (used BBIE_SCs are those BBIE_SC
turned on by the user).

5. If the “type” keyword contains “array”, the “minItems” and “maxItems” keys with the
values following Rule 7 and the “items” keyword that is a subschema containing the
following keywords:
5.1. If there is at least one BBIE_SC specified as used and has max cardinality that is not

zero,
5.1.1. The “type” keyword with the value “object”.
5.1.2. The “required” keyword with the value that is an array of “content” and

names of BBIE_SCs whose min cardinality values are one. Names of BBIE_SC
are serialized according to Rule 4. The serialized name shall be the truncated
concatenation of the BBIE_SC’s property term and representation term.
However, when the representation term is ‘Text’, it is dropped.

5.1.3. The “additionalProperties” keyword with the value false.
5.1.4. The “properties” keyword that is an object containing the following

subschemas:
5.1.4.1. “content” subschema that is a reference to a JSON definition according

to one of the BBIE’s primitive columns that is not null. JSON definition
subschemas are the serialization of all primitives (8.6), code lists (8.7), or
agency identification lists (8.7) used within the serialized top-level ABIEs.
In addition, the content subschema shall contain “default” and “const”
keywords with the value according to the BBIE’s default value and fixed
value, respectively, if they are specified3.

5.1.4.2. Subschemas with the names corresponding to the used BBIE_SCs
whose max cardinality is not zero (used BBIE_SCs are those BBIE_SC
turned on by the user).

5.2. Otherwise (i.e., there is no BBIE_SC to serialized), a reference ($ref) to a JSON
definition subschema according to one of the BBIE’s primitive columns that is not
null. JSON definition subschemas are the serialization of all primitives (8.6), code
lists (8.7), or agency identification lists (8.7) used within the serialized top-level
ABIEs. In addition, the content subschema shall contain “default” and “const”
keywords with the value according to the BBIE’s default value and fixed value,
respectively, if they are specified.

Lemma 4: A BBIE is derived from a BCC. A BBIEP is derived from a BCCP. A BCC is an
association from an ACC to a BCCP; in other words, a BCC uses a BCCP and hence a BBIE
uses a BBIEP. A BCCP is imported from an XML Schema global element declaration that has
simple content in the OAGIS Model XML schema or from an XML Schema attribute, which is
not characterized as a SC (in other words, when the attribute is a child of an ACC). A BCC is
imported from an XML Schema element reference to a BCCP within an ACC.

Corollary 4.1: A BBIE is an association from an ABIE to a BBIEP.

Lemma 5: A BCCP uses a BDT.

Corollary 5.1: A BBIEP also uses a BDT.

Corollary 5.2: A BDT may have some SCs, so in the CC realm the relationship chain to an
SC looks like BCC -> BCCP -> BDT -> SC. Strictly following the model in the CCS the

3 The default and fixed value constraint may not make sense in the case that the BBIE is an
array. At this time, the application does not provide a warning when that is the case.

Serialization Specification from BIE to JSON Schema

Page 27 of 38

relationship chain in the BIE realm would look like BBIE -> BBIEP -> BDT -> SC. However,
the OAGIS Repository data model has simplified this by moving both the BDT and SC to
have direct relationships to BBIE. That is why the BBIE table has primitive columns including
BDT_PRI_RESTRI_ID, CODE_LIST_ID, and AGENCY_ID_LIST_ID; there is a BBIE_SC table
that directly links to the BBIE table.

 BDT (DT table) and BBIE_SC
Because of Corollary 5.2, a BDT is implicitly generated as part of the BBIE and BBIEP
according to clause 8.4 depending on whether there is any SC enabled (used) in the BBIE
(as indicated by its associated BBIE_SC record(s)). However, the primitive assigned to the
BDT and its SC is generated according to clause 8.6 and 8.7. The primitive can be a built-in
type, code list, or agency ID list.

The BBIE_SC is generated as a subschema according to clause 8.4 #4.3.2 and #5.1.4.2.
The name of the subschema shall follow Rule 4. The serialized name shall be the truncated
concatenation of the BBIE_SC’s property term and representation term. However, when the
representation term is ‘Text’, it is dropped. The subschema shall contain the following
keywords:

1. The “$ref” keyword whose value refers to the primitive generated in 8.6 or 8.7 according
to one of the BBIE_SC’s primitive columns4 that is not null.

2. If the BBIE_SC has a default value specified, a keyword “default” with the value
according to the BBIE_SC’s default value.

3. If the BBIE has a fixed value specified, a keyboard “const” with the value according to
the BBIE_SC’s fixed value.

Lemma 6: Per CCS, an SC is part of a BDT. However, in the Score and OAGIS Repository
implementation the BDTs are CC artifacts and are not reflected explicitly as a BIE artifact.
That is, a primitive restriction (which can be a built-in type, code list, or agency ID list) is
applied directly in the BBIE and the BBIE_SC tables (as opposed to creating another DT
record). For this reason, the primitive used by the BBIE and BBIE_SC should be fetched
from the primitive restriction columns captured in the BBIE and BBIE_SC table. The
primitive restriction columns in the BBIE_SC table include BDT_SC_PRI_RESTRI_ID,
CODE_LIST_ID, AGENCY_ID_LIST_ID columns.

 OAGIS Built-in Type (XBT table)
XBT table stores available built-in types including how they map to XML Schema types and
JSON Schema types. Only built-in types used in the serialized BIE are generated in the BIE
JSON schema. Each built-in type is generated as a subschema within the JSON “definition”
subschema. Name of the subschema shall follow the XBT’s BUILTIN_TYPE column with the
“xsd:” prefix, while the content of the subschema shall include the content from the XBT’s
JBT_DRAFT05_MAP column. The table in section 10 shows the built-in type map to JSON
Schema data type.

4 BBIE_SC primitive columns include BDT_SC_PRI_RESTRI_ID, CODE_LIST_ID,
AGENCY_ID_LIST_ID columns.

Serialization Specification from BIE to JSON Schema

Page 28 of 38

 Code List and Agency ID List
Code list as well as agency ID list is serialized as a subschema within the JSON “definition”
subschema. Only code lists and agency ID lists used in the serialized BIE are generated in
the JSON schema. Name of the subschema shall be generated as follows.

The name of the code list shall be the concatenation of the ‘cl’, AGENCY_ID, ‘_’,
VERSION_ID, ‘_’, NAME, ‘ContentType’, ‘_’, LIST_ID. If NAME is empty, remove the ‘_’ in
its front. Also, remove whitespaces in the NAME to make it camel case (LIST_ID and
VERSION_ID columns shall not have space).

The name of the agency ID list shall be the concatenation of the ‘il’,
AGENCY_ID_LIST_VALUE, ‘_’, VERSION_ID, ‘_’, NAME, ‘ContentType’, ‘_’, LIST_ID. Remove
whitespaces in the NAME column value, if any, to make it camel case (LIST_ID and
VERSION_ID columns shall not have space).

The subschema shall contain the following keywords:

1. The “type” keyword with the value “string”.
2. The “enum” keyword which is an array of values of the respective code list or agency ID

list.

9 Full BIE JSON Schema Examples

This example is for the case where the user has chosen to serialize a single BIE per schema
and the BIE Definition enabled.

{
 "$schema" : "http://json-schema.org/draft-04/schema#",
 "required" : ["bom"],
 "additionalProperties" : false,
 "properties" : {
 "bom" : {
 "description" : "This is BOM BIE is for the Super BOM in the context of assemble-to-order.",
 "type" : "object",
 "required" : ["actionCode", "typeCode"],
 "additionalProperties" : false,
 "properties" : {
 "typeCode" : {
 "description" : "Indicate that this is a model BOM (i.e., super BOM).",
 "const": "Model",
 "$ref" : "#/definitions/token"
 },
 "actionCode" : {
 "description" : "Indicate the transactional action to perform on the BOM.",
 "$ref" : "#/definitions/cl310_1_oacl_actioncodecontenttype_oagis-id-49c1788460864e99b0872d0a6e58bddb"
 },
 "bomHeader" : {
 "type" : "object",
 "required" : ["identifier"],
 "additionalProperties" : false,
 "properties" : {
 "identifier" : {
 "description" : "This is the middleware generate identifier of the BOM used for cross reference.",
 "type" : "object",

Serialization Specification from BIE to JSON Schema

Page 29 of 38

 "required" : ["content", "schemeIdentifier"],
 "additionalProperties" : false,
 "properties" : {
 "content" : {
 "$ref" : "#/definitions/normalizedString"
 },
 "schemeIdentifier" : {
 "$ref" : "#/definitions/token",
 "const": "xref"
 }
 }
 },
 "documentIdentifierSet" : {
 "type" : "object",
 "required" : ["identifier"],
 "additionalProperties" : false,
 "properties" : {
 "identifier" : {
 "description" : "Internal primary key of the associated entity.",
 "type" : "object",
 "required" : ["content", "schemeIdentifier", "schemeAgencyIdentifier"],
 "additionalProperties" : false,
 "properties" : {
 "content" : {
 "$ref" : "#/definitions/normalizedString"
 },
 "schemeIdentifier" : {
 "description" : "The Internal Key indicates that this identifier is the primary key of the associated entity.",
 "$ref" : "#/definitions/token",
 "const": "Internal Key"
 },
 "schemeAgencyIdentifier" : {
 "description" : "This should indicate the ID of the source application that owns this identifier.",
 "$ref" : "#/definitions/token"
 }
 }
 }
 }
 },
 "effectiveTimePeriod" : {
 "description" : "Time period in which the BOM is valid.",
 "type" : "object",
 "required" : ["startDateTime"],
 "additionalProperties" : false,
 "properties" : {
 "startDateTime" : {
 "description" : "The date time when the BOM becomes effective. This is required.",
 "$ref" : "#/definitions/dateTime"
 },
 "endDateTime" : {
 "description" : "End time is optional. When it is not specified, the effectivity is open ended.",
 "$ref" : "#/definitions/dateTime"
 }
 }
 }
 }

Serialization Specification from BIE to JSON Schema

Page 30 of 38

 },
 "bomItemData" : {
 "type" : "array",
 "items" : {
 "type" : "object",
 "required" : ["identifier"],
 "additionalProperties" : false,
 "properties" : {
 "identifier" : {
 "description" : "This is an identifier generated by the middleware that can be used for cross-reference.",
 "type" : "object",
 "required" : ["content", "schemeIdentifier"],
 "additionalProperties" : false,
 "properties" : {
 "content" : {
 "$ref" : "#/definitions/normalizedString"
 },
 "schemeIdentifier" : {
 "$ref" : "#/definitions/token",
 "const": "xref"
 }
 }
 },
 "itemIdentifierSet" : {
 "type" : "object",
 "required" : ["identifier"],
 "additionalProperties" : false,
 "properties" : {
 "identifier" : {
 "description" : "Application internal primary key of the associated entity.",
 "type" : "object",
 "required" : ["content", "schemeIdentifier", "schemeAgencyIdentifier"],
 "additionalProperties" : false,
 "properties" : {
 "content" : {
 "$ref" : "#/definitions/normalizedString"
 },
 "schemeIdentifier" : {
 "description" : "The Internal Key indicates that this identifier is the primary key of the associated entity.",
 "$ref" : "#/definitions/token",
 "const": "Internal Key"
 },
 "schemeAgencyIdentifier" : {
 "description" : "This should indicate the ID of the source application that owns this identifier.",
 "$ref" : "#/definitions/token"
 }
 }
 }
 }
 },
 "quantity" : {
 "description" : "Quantity of the item used in the BOM.",
 "type" : "array",
 "items" : {
 "type" : "object",
 "required" : ["content"],

Serialization Specification from BIE to JSON Schema

Page 31 of 38

 "additionalProperties" : false,
 "properties" : {
 "content" : {
 "$ref" : "#/definitions/integer"
 },
 "typeCode" : {
 "description" : "Indicate min, max, or fixed quantity. If there is a fixed quantity there shall be no min or max
quantity.",
 "$ref" : "#/definitions/cl402_1.0_bomquantitytypecodecontenttype_oagis-id-dafdf58b5c8246e098ab640547da91ca"
 },
 "unitCode" : {
 "$ref" : "#/definitions/cl402_1.0_oacl_unitcode_greenmanufacturingextensioncontenttype_oagis-id-
0ae356b7d83a427680330b9662b48c0e"
 }
 }
 }
 },
 "note" : {
 "description" : "Remark to display to the user when viewing the item details.",
 "type" : "array",
 "items" : {
 "$ref" : "#/definitions/string"
 }
 }
 }
 }
 },
 "bomOption" : {
 "description" : "Specifies BOM Item that is an option and the characteristics of the option.",
 "type" : "array",
 "items" : {
 "type" : "object",
 "required" : ["identifier"],
 "additionalProperties" : false,
 "properties" : {
 "identifier" : {
 "description" : "This is an identifier generated by the middleware that can be used for cross-reference.",
 "type" : "object",
 "required" : ["content"],
 "additionalProperties" : false,
 "properties" : {
 "content" : {
 "$ref" : "#/definitions/normalizedString"
 },
 "schemeIdentifier" : {
 "$ref" : "#/definitions/token",
 "const": "xref"
 }
 }
 },
 "note" : {
 "description" : "Convey instruction to the user when configuring the option.",
 "type" : "array",
 "items" : {
 "$ref" : "#/definitions/string"
 }

Serialization Specification from BIE to JSON Schema

Page 32 of 38

 },
 "bomItemData" : {
 "type" : "array",
 "items" : {
 "type" : "object",
 "additionalProperties" : false,
 "properties" : {
 "identifier" : {
 "description" : "This is the reference back to the Identifier in the BOM Item Data.",
 "$ref" : "#/definitions/normalizedString",
 "const": "xref"
 }
 }
 }
 },
 "quantity" : {
 "description" : "Quantity in the BOM Option can override the Quantity in the BOM Item Data.",
 "type" : "array",
 "items" : {
 "type" : "object",
 "required" : ["content", "typeCode", "unitCode"],
 "additionalProperties" : false,
 "properties" : {
 "content" : {
 "$ref" : "#/definitions/decimal"
 },
 "typeCode" : {
 "$ref" : "#/definitions/cl402_1.0_bomquantitytypecodecontenttype_oagis-id-dafdf58b5c8246e098ab640547da91ca"
 },
 "unitCode" : {
 "$ref" : "#/definitions/cl402_1.0_oacl_unitcode_greenmanufacturingextensioncontenttype_oagis-id-
0ae356b7d83a427680330b9662b48c0e"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 },
 "definitions" : {
 "token" : {
 "type" : "string"
 },
 "cl310_1_oacl_actioncodecontenttype_oagis-id-49c1788460864e99b0872d0a6e58bddb" : {
 "type" : "string",
 "enum" : ["Add", "Change", "Delete", "Replace", "UpSert", "Accepted", "Modified", "Rejected"]
 },
 "normalizedString" : {
 "type" : "string"
 },
 "dateTime" : {
 "type" : "string",
 "format" : "date-time"

Serialization Specification from BIE to JSON Schema

Page 33 of 38

 },
 "integer" : {
 "type" : "number",
 "multipleOf" : 1
 },
 "cl402_1.0_bomquantitytypecodecontenttype_oagis-id-dafdf58b5c8246e098ab640547da91ca" : {
 "type" : "string",
 "enum" : ["MN", "MX", "FX"]
 },
 "cl402_1.0_oacl_unitcode_greenmanufacturingextensioncontenttype_oagis-id-0ae356b7d83a427680330b9662b48c0e" : {
 "type" : "string",
 "enum" : ["EA", "PR"]
 },
 "string" : {
 "type" : "string"
 },
 "decimal" : {
 "type" : "number"
 }
 }
}

10 OAGIS Built-in Primitive Type Mapping to JSON Types

BUILTIN_TYPE JBT_DRAFT05_MAP
xsd:anyType {"type":"string"}

xsd:anySimpleType {"type":"string"}

xsd:duration {"type":"string",
 "pattern":"^[-
]?P(?!$)(?:\\d+Y)?(?:\\d+M)?(?:\\d+D)?(?:
T(?!$)(?:\\d+H)?(?:\\d+M)?(?:\\d+(?:\\.\\
d+)?S)?)?$"}

xsd:dateTime {"type":"string",
 "format":"date-time"}

xsd:time {"type":"string"}

xsd:date {"type":"string"}

xsd:gYearMonth {"type":"string"}

xsd:gYear {"type":"string"}

xsd:gMonthDay {"type":"string"}

xsd:gDay {"type":"string"}

xsd:gMonth {"type":"string"}

xsd:string {"type":"string"}

xsd:normalizedString {"type":"string"}

xsd:token {"type":"string"}

xsd:language {"type":"string"}

xsd:boolean {"type":"boolean"}

Serialization Specification from BIE to JSON Schema

Page 34 of 38

BUILTIN_TYPE JBT_DRAFT05_MAP
xsd:base64Binary {"type":"string"}

xsd:hexBinary {"type":"string"}

xsd:float {"type":"number"}

xsd:decimal {"type":"number"}

xsd:integer {"type":"number",
 "multipleOf":1}

xsd:nonNegativeInteger {"type":"integer",
 "minimum":0,
 "exclusiveMinimum":false}

xsd:positiveInteger {"type":"integer",
 "minimum":0,
 "exclusiveMinimum":true}

xsd:double {"type":"number"}

xsd:anyURI {"type":"string"
 "format":"uriref"}

xbt_BooleanType {"type":"boolean"}

xbt_WeekDurationType {"type":"string"}

xbt_CenturyType {"type":"string"}

xbt_DateType {"type":"string"}

xbt_DayOfWeekType {"type":"string"}

xbt_DayOfYearType {"type":"string"}

xbt_DayType {"type":"string"}

xbt_MonthDayType {"type":"string"}

xbt_MonthType {"type":"string"}

xbt_WeekType {"type":"string"}

xbt_WeekDayType {"type":"string"}

xbt_YearDayType {"type":"string"}

xbt_YearMonthType {"type":"string"}

xbt_YearType {"type":"string"}

xbt_YearWeekType {"type":"string"}

xbt_YearWeekDayType {"type":"string"}

xbt_HourMinuteType {"type":"string"}

xbt_HourMinuteUTCType {"type":"string"}

xbt_HourMinuteUTCOffsetType {"type":"string"}

xbt_HourType {"type":"string"}

xbt_HourUTCType {"type":"string"}

xbt_HourUTCOffsetType {"type":"string"}

xbt_MinuteType {"type":"string"}

Serialization Specification from BIE to JSON Schema

Page 35 of 38

BUILTIN_TYPE JBT_DRAFT05_MAP
xbt_MinuteSecondType {"type":"string"}

xbt_SecondType {"type":"string"}

xbt_TimeType {"type":"string"}

xbt_TimeUTCType {"type":"string"}

xbt_TimeUTCOffsetType {"type":"string"}

xbt_DateHourMinuteType {"type":"string"}

xbt_DateHourMinuteUTCType {"type":"string"}

xbt_DateHourMinuteUTCOffsetType {"type":"string"}

xbt_DateHourType {"type":"string"}

xbt_DateHourUTCType {"type":"string"}

xbt_DateHourUTCOffsetType {"type":"string"}

xbt_DateTimeType {"type":"string"}

xbt_DateTimeUTCType {"type":"string"}

xbt_DateTimeUTCOffsetType {"type":"string"}

xbt_DayHourMinuteType {"type":"string"}

xbt_DayHourMinuteUTCType {"type":"string"}

xbt_DayHourMinuteUTCOffsetType {"type":"string"}

xbt_DayHourType {"type":"string"}

xbt_DayHourUTCType {"type":"string"}

xbt_DayHourUTCOffsetType {"type":"string"}

xbt_DayOfWeekHourMinuteType {"type":"string"}

xbt_DayOfWeekHourMinuteUTCType {"type":"string"}

xbt_DayOfWeekHourMinuteUTCOffsetType {"type":"string"}

xbt_DayOfWeekHourType {"type":"string"}

xbt_DayOfWeekHourUTCType {"type":"string"}

xbt_DayOfWeekHourUTCOffsetType {"type":"string"}

xbt_DayOfWeekTimeType {"type":"string"}

xbt_DayOfWeekTimeUTCType {"type":"string"}

xbt_DayOfWeekTimeUTCOffsetType {"type":"string"}

xbt_DayOfYearHourMinuteType {"type":"string"}

xbt_DayOfYearHourMinuteUTCType {"type":"string"}

xbt_DayOfYearHourMinuteUTCOffsetType {"type":"string"}

xbt_DayOfYearHourType {"type":"string"}

xbt_DayOfYearHourUTCType {"type":"string"}

xbt_DayOfYearHourUTCOffsetType {"type":"string"}

xbt_DayOfYearTimeType {"type":"string"}

xbt_DayOfYearTimeUTCType {"type":"string"}

Serialization Specification from BIE to JSON Schema

Page 36 of 38

BUILTIN_TYPE JBT_DRAFT05_MAP
xbt_DayOfYearTimeUTCOffsetType {"type":"string"}

xbt_DayTimeType {"type":"string"}

xbt_DayTimeUTCType {"type":"string"}

xbt_DayTimeUTCOffsetType {"type":"string"}

xbt_MonthDayHourMinuteType {"type":"string"}

xbt_MonthDayHourMinuteUTCType {"type":"string"}

xbt_MonthDayHourMinuteUTCOffsetType {"type":"string"}

xbt_MonthDayHourType {"type":"string"}

xbt_MonthDayHourUTCType {"type":"string"}

xbt_MonthDayHourUTCOffsetType {"type":"string"}

xbt_MonthDayTimeType {"type":"string"}

xbt_MonthDayTimeUTCType {"type":"string"}

xbt_MonthDayTimeUTCOffsetType {"type":"string"}

xbt_WeekDayHourMinuteType {"type":"string"}

xbt_WeekDayHourMinuteUTCType {"type":"string"}

xbt_WeekDayHourMinuteUTCOffsetType {"type":"string"}

xbt_WeekDayHourType {"type":"string"}

xbt_WeekDayHourUTCType {"type":"string"}

xbt_WeekDayHourUTCOffsetType {"type":"string"}

xbt_WeekDayTimeType {"type":"string"}

xbt_WeekDayTimeUTCType {"type":"string"}

xbt_WeekDayTimeUTCOffsetType {"type":"string"}

xbt_YearDayHourMinuteType {"type":"string"}

xbt_YearDayHourMinuteUTCType {"type":"string"}

xbt_YearDayHourMinuteUTCOffsetType {"type":"string"}

xbt_YearDayHourType {"type":"string"}

xbt_YearDayHourUTCType {"type":"string"}

xbt_YearDayHourUTCOffsetType {"type":"string"}

xbt_YearDayTimeType {"type":"string"}

xbt_YearDayTimeUTCType {"type":"string"}

xbt_YearDayTimeUTCOffsetType {"type":"string"}

xbt_YearWeekDayHourMinuteType {"type":"string"}

xbt_YearWeekDayHourMinuteUTCType {"type":"string"}

xbt_YearWeekDayHourMinuteUTCOffsetType {"type":"string"}

xbt_YearWeekDayHourType {"type":"string"}

xbt_YearWeekDayHourUTCType {"type":"string"}

xbt_YearWeekDayHourUTCOffsetType {"type":"string"}

Serialization Specification from BIE to JSON Schema

Page 37 of 38

BUILTIN_TYPE JBT_DRAFT05_MAP
xbt_YearWeekDayTimeType {"type":"string"}

xbt_YearWeekDayTimeUTCType {"type":"string"}

xbt_YearWeekDayTimeUTCOffsetType {"type":"string"}

	1 Glossary
	2 Conventions
	3 Purpose
	4 Scope
	4.1 Schema size optimization
	4.2 Advance semantic restriction
	4.3 XML-JSON round-tripping
	4.4 Matching primitives with XML schema primitives
	4.5 BIE meta-data
	4.6 OAGIS Model JSON schemas
	4.7 Full BIE JSON schema for importing/exporting including CC references
	4.8 Open API Generation

	5 Relevant Specifications
	6 Tools Used for Creation of This Document
	7 Overall Design
	7.1 Compatibility
	7.2 JSON Schema Design Pattern
	7.3 Plural
	7.4 Lower Camel Case
	7.5 Meta Schema
	7.6 Root Property Key
	7.7 Forgoing the Type Inheritance and Attribute Designation.
	7.8 Simplified BDT
	7.9 Forgoing the xsd:group
	7.10 The “additionalProperties” Key
	7.11 JSON Array

	8 Normative Mapping of OAGIS Repository Entities to JSON Schema Constructs
	8.1 Top-level ASBIEP
	8.2 Top-level ABIE
	8.3 ASBIE and Its ASBIEP and ABIE
	8.4 BBIE and Its BBIEP
	8.5 BDT (DT table) and BBIE_SC
	8.6 OAGIS Built-in Type (XBT table)
	8.7 Code List and Agency ID List

	9 Full BIE JSON Schema Examples
	10 OAGIS Built-in Primitive Type Mapping to JSON Types

